Approximation Theorems in Locally Convex Lattices

Author(s):  
Ileana Bucur ◽  
Gavriil Paltineanu
2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ludovic Dan Lemle

This paper deals with the study of some operator inequalities involving the powerq-bounded operators along with the most known properties and results, in the more general framework of locally convex vector spaces.


1995 ◽  
Vol 51 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Sehie Park

Let (E, τ) be a Hausdorff topological vector space and (X, ω) a weakly compact convex subset of E with the relative weak topology ω. Recently, there have appeared best approximation and fixed point theorems for convex-valued upper semicontinuous maps F: (X, ω) → 2(E, τ) whenever (E, τ) is locally convex. In this paper, these results are extended to a very broad class of multifunctions containing composites of acyclic maps in a topological vector space having sufficiently many linear functionals. Moreover, we also obtain best approximation theorems for classes of multifunctions defined on approximatively compact convex subsets of locally convex Hausdorff topological vector spaces or closed convex subsets of Banach spaces with the Oshman property.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5111-5116
Author(s):  
Davood Ayaseha

We study the locally convex cones which have finite dimension. We introduce the Euclidean convex quasiuniform structure on a finite dimensional cone. In special case of finite dimensional locally convex topological vector spaces, the symmetric topology induced by the Euclidean convex quasiuniform structure reduces to the known concept of Euclidean topology. We prove that the dual of a finite dimensional cone endowed with the Euclidean convex quasiuniform structure is identical with it?s algebraic dual.


2008 ◽  
Vol 41 (1) ◽  
Author(s):  
S. Lahrech ◽  
A. Jaddar ◽  
J. Hlal ◽  
A. Ouahab ◽  
A. Mbarki

2005 ◽  
Vol 12 (4) ◽  
pp. 659-669
Author(s):  
Nawab Hussain ◽  
Donal O'Regan ◽  
Ravi P. Agarwal

Abstract We extend the concept of 𝑅-subweakly commuting maps due to Shahzad [J. Math. Anal. Appl. 257: 39–45, 2001] to the case of non-starshaped domains and obtain common fixed point results for this class of maps on non-starshaped domains in the setup of Fréchet spaces. As applications, we establish Brosowski–Meinardus type approximation theorems. Our results unify and extend the results of Al-Thagafi, Dotson, Habiniak, Jungck and Sessa, Sahab, Khan and Sessa and Shahzad.


2002 ◽  
Vol 9 (1) ◽  
pp. 83-112
Author(s):  
S. Kwapień ◽  
V. Tarieladze

Abstract Problems of the Mackey-continuity of characteristic functionals and the localization of linear kernels of Radon probability measures in locally convex spaces are investigated. First the class of spaces is described, for which the continuity takes place. Then it is shown that in a non-complete sigmacompact inner product space, as well as in a non-complete sigma-compact metizable nuclear space, there may exist a Radon probability measure having a non-continuous characteristic functional in the Mackey topology and a linear kernel not contained in the initial space. Similar problems for moment forms and higher order kernels are also touched upon. Finally, a new proof of the result due to Chr. Borell is given, which asserts that any Gaussian Radon measure on an arbitrary Hausdorff locally convex space has the Mackey-continuous characteristic functional.


Author(s):  
ALEXANDER BRUDNYI

Abstract Let $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ be the Banach algebra of bounded holomorphic functions defined on the disjoint union of countably many copies of the open unit disk ${\mathbb {D}}\subset {{\mathbb C}}$ . We show that the dense stable rank of $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ is $1$ and, using this fact, prove some nonlinear Runge-type approximation theorems for $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ maps. Then we apply these results to obtain a priori uniform estimates of norms of approximating maps in similar approximation problems for the algebra $H^\infty ({\mathbb {D}})$ .


Sign in / Sign up

Export Citation Format

Share Document