Agriculture and Mining Contamination Contribute to a Productivity Gradient Driving Cross-Ecosystem Associations Between Stream Insects and Riparian Arachnids

Author(s):  
Francis J. Burdon
2004 ◽  
Vol 8 (3) ◽  
pp. 545-549 ◽  
Author(s):  
R. A. Briers ◽  
J. H. R. Gee

Abstract. The impacts of coniferous plantation forestry on the biology of upland streams in the UK are firmly established. Whilst benthic communities have been well studied, very little research has considered the impacts of riparian forestry management on adult stream insects, yet the essentially terrestrial adult (reproductive) phase may be important in determining the abundance and distribution of larval stages. Riparian vegetation has a potentially strong impact on survival and success of adult stages through alteration of microclimate, habitat structure and potential food sources, in addition to effects carried over from larval stages. Here, current riparian management strategies are analysed in the light of available information on the ecology of adult stream insects. On the whole, management practices appear to favour adult stream insects, although an increase in tree cover in riparian areas could be beneficial, by providing more favourable microclimatic conditions for adults. This conclusion is drawn based on rather limited information, and the need for further research into the effects of riparian forestry management on adult stream insects is highlighted. Keywords: microclimate, plantation, life history, riparian vegetation


2000 ◽  
Vol 19 (4) ◽  
pp. 855-861 ◽  
Author(s):  
David P. Kreutzweiser ◽  
Scott S. Capell ◽  
Taylor A. Scarr

2010 ◽  
Vol 277 (1688) ◽  
pp. 1695-1703 ◽  
Author(s):  
Jonathan W. Moore ◽  
Daniel E. Schindler
Keyword(s):  

2013 ◽  
Vol 24 (5) ◽  
pp. 898-909 ◽  
Author(s):  
Š. Janeček ◽  
F. de Bello ◽  
J. Horník ◽  
M. Bartoš ◽  
T. Černý ◽  
...  

Author(s):  
Scott Hotaling ◽  
Alisha A. Shah ◽  
Kerry L. McGowan ◽  
Lusha M. Tronstad ◽  
J. Joseph Giersch ◽  
...  

AbstractRapid glacier recession is altering the physical conditions of headwater streams. Stream temperatures are predicted to rise and become increasingly variable, putting entire meltwater-associated biological communities at risk of extinction. Thus, there is a pressing need to understand how thermal stress affects mountain stream insects, particularly where glaciers are likely to vanish on contemporary timescales. In this study, we tested the critical thermal maximum (CTMAX) of stonefly nymphs representing multiple species and a range of thermal regimes in the high Rocky Mountains, USA. We then collected RNA-sequencing data to assess how organismal thermal stress translated to the cellular level. Our focal species included the meltwater stonefly, Lednia tumana, which was recently listed under the U.S. Endangered Species Act due to climate-induced habitat loss. For all study species, critical thermal maxima (CTMAX > 20°C) far exceeded the stream temperatures mountain stoneflies experience (< 10°C). Moreover, while evidence for a cellular stress response was present, we also observed constitutive expression of genes encoding proteins known to underlie thermal stress (i.e., heat shock proteins) even at low temperatures that reflected natural conditions. We show that high-elevation aquatic insects may not be physiologically threatened by short-term exposure to warm temperatures and that longer term physiological responses or biotic factors (e.g., competition) may better explain their extreme distributions.


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0131314 ◽  
Author(s):  
Udi Segev ◽  
Jaime Kigel ◽  
Yael Lubin ◽  
Katja Tielbörger

Sign in / Sign up

Export Citation Format

Share Document