alternative states
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 45)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Irene Cordero ◽  
Ainara Leizeaga ◽  
Lettice C Hicks ◽  
Johannes Rousk ◽  
Richard D Bardgett

Soil microbial communities play a pivotal role in regulating ecosystem functioning but they are increasingly threatened by human-driven perturbations, including climate extremes, which are predicted to increase in frequency and intensity with climate change. It has been demonstrated that soil microbial communities are sensitive to climate extremes, such as drought, and that effects can be long-lasting. However, considerable uncertainties remain concerning the response of soil microbial communities to increases in the intensity and frequency of climate extremes, and their potential to trigger transitions to alternative, and potentially deleterious, taxonomic and functional states. Here we demonstrate that extreme, frequent drought induces a shift to an alternative soil microbial state characterised by strongly altered bacterial and fungal community structure of reduced complexity and functionality. Moreover, we found that this drought-induced alternative microbial state persisted after returning soil to its previous moisture status. However, bacterial communities were able to adapt by increasing their growth capacity, despite being of reduced diversity. Abrupt transitions to alternative states are well documented in aquatic and terrestrial plant communities in response to human-induced perturbations, including climate extremes. Our results provide experimental evidence that such transitions also occur in soil microbial communities in response to extreme drought with potentially deleterious consequences for soil health.


2021 ◽  
Author(s):  
Alexis Synodinos ◽  
Rajat Karnatak ◽  
Carlos A. Aguilar-Trigueros ◽  
Pierre Gras ◽  
Tina Heger ◽  
...  

Global change has been predominantly studied from the prism of ‘how much’ rather than ‘how fast’ change occurs. The paradigm underlying the former assumes that a smooth change in an environmental driver can force a regime shift between alternative states (Bifurcation-tipping). This presupposes that environmental conditions change at a rate which allows the ecological entity to track them and thus reach equilibrium. However, current rates of environmental change are often too fast for this paradigm to apply, necessitating a shift in approach to improve predictions on the impacts of rapid environmental change. The theory of rate-induced tipping (Rate-tipping) demonstrates how rates of environmental change can cause tipping phenomena even in the absence of alternative states. We illustrate how Rate-tipping can apply to a range of ecological scenarios and explore the literature for properties which increase the sensitivity to rates of change. Further, we discuss how targeted empirical studies can investigate the ecological and evolutionary mechanisms through which rate-induced phenomena can propagate across levels of organisation. Finally, we argue for the inclusion of Rate-tipping in the study of global change as the first step towards the theoretical synthesis necessary to account for multiple stressors impacting ecological entities simultaneously.


2021 ◽  
pp. 603-619
Author(s):  
David M. Edelstein

The benefits of grand strategy have been overstated. While its advocates claim that grand strategy allows states to coordinate their efforts, signal their interests to allies and adversaries, and shape the behavior of others, the ability of grand strategy effectively to achieve these goals is limited. Not only does grand strategy often struggle to accomplish these tasks, but it may also be counterproductive, leading states to bind their foreign policies to the detriment of their national interests. As an alternative, states ought to consider the adoption of a more pragmatic approach to their foreign policies. Rather than adopting a single, determined grand strategy, states would be better off embracing a more experimental approach to the conduct of their foreign policies. Especially in times of uncertainty, such an approach would allow them to protect their interests while identifying beneficial opportunities to pursue.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 48
Author(s):  
Tegan P. Brown ◽  
Assaf Inbar ◽  
Thomas J. Duff ◽  
Jamie Burton ◽  
Philip J. Noske ◽  
...  

Climate warming is expected to increase fire frequency in many productive obligate seeder forests, where repeated high-intensity fire can initiate stand conversion to alternative states with contrasting structure. These vegetation–fire interactions may modify the direct effects of climate warming on the microclimatic conditions that control dead fuel moisture content (FMC), which regulates fire activity in these high-productivity systems. However, despite the well-established role of forest canopies in buffering microclimate, the interaction of FMC, alternative forest states and their role in vegetation–fire feedbacks remain poorly understood. We tested the hypothesis that FMC dynamics across alternative states would vary to an extent meaningful for fire and that FMC differences would be attributable to forest structural variability, with important implications for fire-vegetation feedbacks. FMC was monitored at seven alternative state forested sites that were similar in all aspects except forest type and structure, and two proximate open-weather stations across the Central Highlands in Victoria, Australia. We developed two generalised additive mixed models (GAMMs) using daily independent and autoregressive (i.e., lagged) input data to test the importance of site properties, including lidar-derived forest structure, in predicting FMC from open weather. There were distinct differences in fuel availability (days when FMC < 16%, dry enough to sustain fire) leading to positive and negative fire–vegetation feedbacks across alternative forest states. Both the independent (r2 = 0.551) and autoregressive (r2 = 0.936) models ably predicted FMC from open weather. However, substantial improvement between models when lagged inputs were included demonstrates nonindependence of the automated fuel sticks at the daily level and that understanding the effects of temporal buffering in wet forests is critical to estimating FMC. We observed significant random effects (an analogue for forest structure effects) in both models (p < 0.001), which correlated with forest density metrics such as light penetration index (LPI). This study demonstrates the importance of forest structure in estimating FMC and that across alternative forest states, differences in fuel availability drive vegetation–fire feedbacks with important implications for forest flammability.


Author(s):  
Calvin G. Normore

Of equally fundamental importance to the current debate over causal powers are its Megaric consequences, the connection between powers and modality. One of the central motivations for adopting a powers ontology is said to be the support causal powers provide for grounding and explaining alternative possibilities. Calvin Normore provides a robust defence of this idea by defending the deeper thesis that time makes a difference for modalities because the existence of powers at a time impose formal constraints on the structural conditions governing the accessibility relation between the actual and the possible. Some alternative states of affairs are not genuine possibilities in the actual world, he argues, because of the powers that obtain in the actual world. Normore, moreover, roots his defence of this thesis in the medieval debate between Scotus and Ockham over whether what is possible is possibly actual (Scotus maintained ‘no it need not be’, whereas Ockham maintained ‘yes it had to be’).


2021 ◽  
Author(s):  
William M. Dawson ◽  
Freddie J.O. Martin ◽  
Guto G. Rhys ◽  
Kathryn L. Shelley ◽  
R. Leo Brady ◽  
...  

ABSTRACTThe rational design of linear peptides that assemble controllably and predictably in water is challenging. Sequences must encode unique target structures and avoid alternative states. However, the stabilizing and discriminating non-covalent forces available are weak in water. Nonetheless, for α-helical coiled-coil assemblies considerable progress has been made in rational de novo design. In these, sequence repeats of nominally hydrophobic (h) and polar (p) residues, hpphppp, direct the assembly of amphipathic helices into dimeric to tetrameric bundles. Expanding this pattern to hpphhph can produce larger α-helical barrels. Here, we show that pentamers to nonamers are achieved simply by varying the residue at one of these h sites. In L/I-K-E-I-A-x-Z repeats, decreasing the size of Z from threonine to serine to alanine to glycine gives progressively larger oligomers. X-ray crystal structures of the resulting α-helical barrels rationalize this: side chains at Z point directly into the helical interfaces, and smaller residues allow closer helix contacts and larger assemblies.


2021 ◽  
Vol 17 (1) ◽  
pp. 20200881
Author(s):  
Alistair W. R. Seddon

Ecological resilience has become a focal concept in ecosystem management. Palaeoecological records (i.e. the sub-fossil remains preserved in sediments) are useful archives to address ecological resilience since they can be used to reconstruct long-term temporal variations in ecosystem properties. The special feature presented here includes nine new papers from members and associates of the PAGES EcoRe3 community. The papers build on previous work in palaeoecology to investigate, identify and compare components of ecosystem resilience on centennial to millennial timescales. There are four key messages that can be summarized from the findings of papers within the special feature: (i) multi-proxy studies reveal insights into the presence and mechanisms of alternative states; (ii) transitions between alternative states may not necessarily be abrupt; (iii) components of ecological resilience can be identified in long-term ecological data and (iv) the palaeoecological record can also provide insights into factors influencing the resilience of ecosystem functioning. Overall, these papers demonstrate the importance of using long-term ecological records for addressing questions related to the theoretical framework provided by ecological resilience.


Sign in / Sign up

Export Citation Format

Share Document