Extinction in a Finite Time for Parabolic Equations of Fast Diffusion Type on Manifolds

Author(s):  
D. Andreucci ◽  
A. F. Tedeev

Author(s):  
Verena Bögelein ◽  
Andreas Heran ◽  
Leah Schätzler ◽  
Thomas Singer

AbstractIn this article we prove a Harnack inequality for non-negative weak solutions to doubly nonlinear parabolic equations of the form $$\begin{aligned} \partial _t u - {{\,\mathrm{div}\,}}{\mathbf {A}}(x,t,u,Du^m) = {{\,\mathrm{div}\,}}F, \end{aligned}$$ ∂ t u - div A ( x , t , u , D u m ) = div F , where the vector field $${\mathbf {A}}$$ A fulfills p-ellipticity and growth conditions. We treat the slow diffusion case in its full range, i.e. all exponents $$m > 0$$ m > 0 and $$p>1$$ p > 1 with $$m(p-1) > 1$$ m ( p - 1 ) > 1 are included in our considerations.



1986 ◽  
Vol 104 (1-2) ◽  
pp. 161-167 ◽  
Author(s):  
A. A. Lacey

SynopsisSolutions to semilinear parabolic equations of the form ut = Δu + f(u), x in Ω, which blow up at some finite time t* are investigated for “slowly growing” functions f. For nonlinearities such as f(s) = (2 +s)(ln(2 +s))1+b with 0 < b < l,u becomes infinite throughout Ω as t→t* −. It is alsofound that for marginally more quickly growing functions, e.g. f(s) = (2 + s)(ln(2 +s))2, u is unbounded on some subset of Ω which has positive measure, and is unbounded throughout Ω if Ω is a small enough region.



Author(s):  
Yuan-wei Qi

In this paper we study the Cauchy problem in Rn of general parabolic equations which take the form ut = Δum + ts|x|σup with non-negative initial value. Here s ≧ 0, m > (n − 2)+/n, p > max (1, m) and σ > − 1 if n = 1 or σ > − 2 if n ≧ 2. We prove, among other things, that for p ≦ pc, where pc ≡ m + s(m − 1) + (2 + 2s + σ)/n > 1, every nontrivial solution blows up in finite time. But for p > pc a positive global solution exists.



Sign in / Sign up

Export Citation Format

Share Document