scholarly journals Depth Map Estimation with Consistent Normals from Stereo Images

Author(s):  
Alexander Malyshev
Author(s):  
Márcio C. F. Macedo ◽  
Antônio L. Apolinário
Keyword(s):  

2013 ◽  
Vol 10 (5) ◽  
pp. 39-49 ◽  
Author(s):  
Sang-Beom Lee ◽  
Yo-Sung Ho
Keyword(s):  
3D Video ◽  

2021 ◽  
Vol 8 ◽  
Author(s):  
Qi Zhao ◽  
Ziqiang Zheng ◽  
Huimin Zeng ◽  
Zhibin Yu ◽  
Haiyong Zheng ◽  
...  

Underwater depth prediction plays an important role in underwater vision research. Because of the complex underwater environment, it is extremely difficult and expensive to obtain underwater datasets with reliable depth annotation. Thus, underwater depth map estimation with a data-driven manner is still a challenging task. To tackle this problem, we propose an end-to-end system including two different modules for underwater image synthesis and underwater depth map estimation, respectively. The former module aims to translate the hazy in-air RGB-D images to multi-style realistic synthetic underwater images while retaining the objects and the structural information of the input images. Then we construct a semi-real RGB-D underwater dataset using the synthesized underwater images and the original corresponding depth maps. We conduct supervised learning to perform depth estimation through the pseudo paired underwater RGB-D images. Comprehensive experiments have demonstrated that the proposed method can generate multiple realistic underwater images with high fidelity, which can be applied to enhance the performance of monocular underwater image depth estimation. Furthermore, the trained depth estimation model can be applied to real underwater image depth map estimation. We will release our codes and experimental setting in https://github.com/ZHAOQIII/UW_depth.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3526 ◽  
Author(s):  
Ayhan ◽  
Kwan

In this paper, we introduce an in-depth application of high-resolution disparity map estimation using stereo images from Mars Curiosity rover’s Mastcams, which have two imagers with different resolutions. The left Mastcam has three times lower resolution as that of the right. The left Mastcam image’s resolution is first enhanced with three methods: Bicubic interpolation, pansharpening-based method, and a deep learning super resolution method. The enhanced left camera image and the right camera image are then used to estimate the disparity map. The impact of the left camera image enhancement is examined. The comparative performance analyses showed that the left camera enhancement results in getting more accurate disparity maps in comparison to using the original left Mastcam images for disparity map estimation. The deep learning-based method provided the best performance among the three for both image enhancement and disparity map estimation accuracy. A high-resolution disparity map, which is the result of the left camera image enhancement, is anticipated to improve the conducted science products in the Mastcam imagery such as 3D scene reconstructions, depth maps, and anaglyph images.


Author(s):  
Soo-Yeon Shin ◽  
Dong-Myung Kim ◽  
Byung-Do Yang ◽  
Chan-Sik Park ◽  
Jae-Won Suh

Sign in / Sign up

Export Citation Format

Share Document