Bioaccumulation Assessment of Trace Metals by Three Main Demersal Fish from Algerian Coast

Author(s):  
Inal Ahmed ◽  
Belkacem Yasmina ◽  
Benfares Redouane ◽  
Rouidi Samir ◽  
Bachouche Samir ◽  
...  
Author(s):  
W. Halcrow ◽  
D. W. Mackay ◽  
I. Thornton

SummaryTrace metals have been determined in the sediments, waters and fauna of a sewagesludge disposal area in the Firth of Clyde. Enhanced values of organic carbon and several metals were found in the sediments of the immediate deposit area. The results are discussed in relation to local background variations and compared with data from the Solway Firth. Trace-metal concentrations in the waters of the deposit area were higher than those from further off shore in the Clyde.Epifaunal species showed rather erratic variation in trace metal content, unrelated to total or readily extractable trace metals in the underlying sediment. The tracemetal content of demersal fish species was not significantly different from figures reported for elsewhere in the United Kingdom.The distributions of some in-faunal and epifaunal species in the area are described.It is concluded that the effects of sewage sludge disposal in this area are local, gross changes being limited to an area of about 20 km2 of sea-bed. However, little is known of the overall effects of toxic wastes particularly at threshold levels, and further monitoring is required.


Author(s):  
B. J. Panessa ◽  
H. W. Kraner ◽  
J. B. Warren ◽  
K. W. Jones

During photoexcitation the retina requires specific electrolytes and trace metals for optimal function (Na, Mg, Cl, K, Ca, S, P, Cu and Zn). According to Hagins (1981), photoexcitation and generation of a nerve impulse involves the movement of Ca from the rhodopsin-ladened membranes of the rod outer segment (ROS) to the plasmalemma, which in turn decreases the in-flow of Na into the photoreceptor, resulting in hyperpolarization. In toad isolated retinas, the presence of Ba has been found to increase the amplitude and prolong the delay of the light response (Brown and Flaming, 1978). Trace metals such as Cu, Zn and Se are essential for the activity of the metalloenzymes of the retina and retina pigment epithelium (RPE) (i.e. carbonic anhydrase, retinol dehydrogenase, tyrosinase, glutathione peroxidase, superoxide dismutase...). Therefore the content and fluctuations of these elements in the retina and choroid are of fundamental importance for the maintenance of vision. This paper presents elemental data from light and dark adapted frog ocular tissues examined by electron beam induced x-ray microanalysis, x-ray fluorescence spectrometry (XRF) and proton induced x-ray emission spectrometry (PIXE).


Author(s):  
James S. Webber

INTRODUCTION“Acid rain” and “acid deposition” are terms no longer confined to the lexicon of atmospheric scientists and 1imnologists. Public awareness of and concern over this phenomenon, particularly as it affects acid-sensitive regions of North America, have increased dramatically in the last five years. Temperate ecosystems are suffering from decreased pH caused by acid deposition. Human health may be directly affected by respirable sulfates and by the increased solubility of toxic trace metals in acidified waters. Even man's monuments are deteriorating as airborne acids etch metal and stone features.Sulfates account for about two thirds of airborne acids with wet and dry deposition contributing equally to acids reaching surface waters or ground. The industrial Midwest is widely assumed to be the source of most sulfates reaching the acid-sensitive Northeast since S02 emitted as a byproduct of coal combustion in the Midwest dwarfs S02 emitted from all sources in the Northeast.


2003 ◽  
Vol 104 ◽  
pp. 435-438 ◽  
Author(s):  
B. S. Twining ◽  
S. B. Baines ◽  
N. S. Fisher ◽  
C. Jacobsen ◽  
J. Maser
Keyword(s):  

2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


2020 ◽  
Vol 638 ◽  
pp. 149-164
Author(s):  
GM Svendsen ◽  
M Ocampo Reinaldo ◽  
MA Romero ◽  
G Williams ◽  
A Magurran ◽  
...  

With the unprecedented rate of biodiversity change in the world today, understanding how diversity gradients are maintained at mesoscales is a key challenge. Drawing on information provided by 3 comprehensive fishery surveys (conducted in different years but in the same season and with the same sampling design), we used boosted regression tree (BRT) models in order to relate spatial patterns of α-diversity in a demersal fish assemblage to environmental variables in the San Matias Gulf (Patagonia, Argentina). We found that, over a 4 yr period, persistent diversity gradients of species richness and probability of an interspecific encounter (PIE) were shaped by 3 main environmental gradients: bottom depth, connectivity with the open ocean, and proximity to a thermal front. The 2 main patterns we observed were: a monotonic increase in PIE with proximity to fronts, which had a stronger effect at greater depths; and an increase in PIE when closer to the open ocean (a ‘bay effect’ pattern). The originality of this work resides on the identification of high-resolution gradients in local, demersal assemblages driven by static and dynamic environmental gradients in a mesoscale seascape. The maintenance of environmental gradients, specifically those associated with shared resources and connectivity with an open system, may be key to understanding community stability.


Sign in / Sign up

Export Citation Format

Share Document