Effect of Heat Treatment on Microstructure and Properties of Wear-Resistant Cast Steel with High Strength and Toughness

Author(s):  
Haijun Cui ◽  
Bo Zhang ◽  
Meng Wang
2013 ◽  
Vol 791-793 ◽  
pp. 440-443
Author(s):  
Hong Bo Li ◽  
Jing Wang ◽  
Han Chi Cheng ◽  
Chun Jie Li ◽  
Xing Jun Su

This paper mainly studied the high temperature quenching oil quenching, tempering temperature on the influence of high strength steel mechanical properties of wear resistant. The results show that high strength and toughness wear-resistant cast steel with 880°C× 30min after oil quenching, the hardness of 38.6HRC steel, the impact toughness value reaches 40.18J/cm2. After 200°C, 400°C and 600°C tempering, with the increase of the tempering temperature, the hardness decreased linearly, as by 600°C tempering, the hardness has been reduced to 22.3HRC. Impact toughness with the tempering temperature, the overall upward trend, the impact toughness of some reduced at 400°C, the highest impact toughness value reaches 113.34J/cm2. From the fracture morphology can be seen, with the increase of tempering temperature, ductile fracture increased, by 600°C tempering is dimple fracture, obviously can not see the traces of brittle fracture.


2013 ◽  
Vol 58 (1) ◽  
pp. 25-30 ◽  
Author(s):  
G. Golanski ◽  
J. Słania

The paper presents a research on the influence of multistage heat treatment with the assumed parameters of temperature and time on the microstructure and mechanical properties of high-chromium martensitic GX12CrMoVNbN9-1 (GP91) cast steel. In the as-cast state GP91 cast steel was characterized by a microstructure of lath martensite with numerous precipitations of carbides of the M23C6, M3C and NbC type, with its properties higher than the required minimum. Hardening of the examined cast steel contributes to obtaining a microstructure of partly auto-tempered martensite of very high strength properties and impact strength KV on the level of 9-15 J. Quenching and tempering with subsequent stress relief annealing of GP91 cast steel contributed to obtaining the microstructure of high-tempered lath martensite with numerous precipitations of the M23C6 and MX type of diverse size. The microstructure of GP91 cast steel received after heat treatment was characterized by strength properties (yield strength, tensile strength) higher than the required minimum and a very high impact energy KV. It has been proved that GP91 cast steel subject to heat treatment No. 2 as a result of two-time heating above the Ac3 temperature is characterized by the highest impact energy.


1976 ◽  
Vol 62 (2) ◽  
pp. 254-266
Author(s):  
Hiroshi KOHIRA ◽  
Masao HORI ◽  
Toru MUTA ◽  
Tadashi NISHI ◽  
Katsumi SUZUKI

2018 ◽  
Vol 61 (11) ◽  
pp. 866-875
Author(s):  
A. G. Shiryaev ◽  
S. G. Chetverikov ◽  
S. G. Chikalov ◽  
I. Yu. Pyshmintsev ◽  
P. V. Krylov

The review contains main directions in the development of modern steelmaking, hot rolling technologies and heat treatment aimed to follow increased requirements to seamless tubes for production of oil and gas under severe conditions. New targets of PJSC “Gazprom” in development of new resources have determined new technical requirements to pipes for low temperature application, resistant to hydrogen sulfide and carbon dioxide corrosion. Basic metal science approaches are given to develop new chemical compositions of high quality steels containing minimum of sulfur, phosphorous and solute gases. Corresponding heat treatment routes are determined for formation of martensitic microstructure in full wall section during quenching with subsequent high tempering for required combination of high strength and ductility. It was shown that optimal combination of high strength and toughness at 60 °C below zero can be achieved by alloying of chromium-molybdenum steel containing about 0.25 wt. % of carbon with strong carbon forming elements such as vanadium and niobium. Sustainability of these steels to stress sulfide cracking was achieved through grain refinement with microalloying by molybdenum in concentrations corresponding to strength grades that gives high hardenability and retards tempering of martensite. New compositions of corrosion resistant martensitic 13 % chromium steel were carried out that was resulted in required resistance to carbon dioxide environments with improved low temperature toughness and high strength. The authors present results of reconstruction of steel making and hot rolling production lines at JSC “Volzhskii Pipe Plant” providing the required quality of new products from continuously cast steel billets to finished tubes.


2018 ◽  
Vol 48 (8) ◽  
pp. 536-540
Author(s):  
M. Yu. Matrosov ◽  
P. G. Martynov ◽  
A. V. Mitrofanov ◽  
K. Yu. Barabash ◽  
N. I. Kamenskaya ◽  
...  

2012 ◽  
Vol 557-559 ◽  
pp. 34-37
Author(s):  
Jing Qiang Zhang ◽  
Jie Min Du ◽  
Ji Wei Guo ◽  
Shou Fan Rong ◽  
Guang Zhou Wang

The influences of Mn and heat-treatment technology on microstructure and mechanical properties of medium-carbon-low-alloy wear-resistant cast steel were investigated. The results show that the hardness first increases and then drops down with the increase of Mn content, and the best hardness is 54HRC with Mn content 1.5%. The impact toughness first increases and then drops down with the increase of Mn content. The hardness and impact toughness first increase and then drop down with the increases of quenching temperature. The optimal impact toughness can be obtaind by quenching at 920°C and tempering at 200°C. Part of lower bainite and residual austenite and mass of tempered martensite are obtaind after tempering.


Sign in / Sign up

Export Citation Format

Share Document