scholarly journals A Machine Learning Based Software Pipeline to Pick the Variable Ordering for Algorithms with Polynomial Inputs

Author(s):  
Dorian Florescu ◽  
Matthew England
Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1235
Author(s):  
Giuseppe Varone ◽  
Sara Gasparini ◽  
Edoardo Ferlazzo ◽  
Michele Ascoli ◽  
Giovanbattista Gaspare Tripodi ◽  
...  

The diagnosis of psychogenic nonepileptic seizures (PNES) by means of electroencephalography (EEG) is not a trivial task during clinical practice for neurologists. No clear PNES electrophysiological biomarker has yet been found, and the only tool available for diagnosis is video EEG monitoring with recording of a typical episode and clinical history of the subject. In this paper, a data-driven machine learning (ML) pipeline for classifying EEG segments (i.e., epochs) of PNES and healthy controls (CNT) is introduced. This software pipeline consists of a semiautomatic signal processing technique and a supervised ML classifier to aid clinical discriminative diagnosis of PNES by means of an EEG time series. In our ML pipeline, statistical features like the mean, standard deviation, kurtosis, and skewness are extracted in a power spectral density (PSD) map split up in five conventional EEG rhythms (delta, theta, alpha, beta, and the whole band, i.e., 1–32 Hz). Then, the feature vector is fed into three different supervised ML algorithms, namely, the support vector machine (SVM), linear discriminant analysis (LDA), and Bayesian network (BN), to perform EEG segment classification tasks for CNT vs. PNES. The performance of the pipeline algorithm was evaluated on a dataset of 20 EEG signals (10 PNES and 10 CNT) that was recorded in eyes-closed resting condition at the Regional Epilepsy Centre, Great Metropolitan Hospital of Reggio Calabria, University of Catanzaro, Italy. The experimental results showed that PNES vs. CNT discrimination tasks performed via the ML algorithm and validated with random split (RS) achieved an average accuracy of 0.97 ± 0.013 (RS-SVM), 0.99 ± 0.02 (RS-LDA), and 0.82 ± 0.109 (RS-BN). Meanwhile, with leave-one-out (LOO) validation, an average accuracy of 0.98 ± 0.0233 (LOO-SVM), 0.98 ± 0.124 (LOO-LDA), and 0.81 ± 0.109 (LOO-BN) was achieved. Our findings showed that BN was outperformed by SVM and LDA. The promising results of the proposed software pipeline suggest that it may be a valuable tool to support existing clinical diagnosis.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document