Graphene Oxide—Glass Nanocomposite Obtained by Sintering and Melting

Author(s):  
Bogdan Alexandru Sava ◽  
Lucica Boroica ◽  
Ileana Cristina Vasiliu ◽  
Mihail Elisa ◽  
Alexandra Trefilov ◽  
...  
Keyword(s):  
2019 ◽  
Vol 14 ◽  
pp. 155892501988310
Author(s):  
Shun Li ◽  
Zhaofeng Chen ◽  
Zhiyuan Rao ◽  
Fei Wang ◽  
Cao Wu ◽  
...  

In this article, reduced graphene oxide/glass composite fiber was prepared from mixing graphene oxide and glass powder by ultrasonic dispersion, planetary grinding, high-temperature sintering, and melting wire drawing. The effects of reduced graphene oxide content on the mechanical and electrical properties of the fiber were investigated. Thermal gravimetric analyzer, differential scanning calorimeter, x-ray diffraction, and energy-dispersive x-ray spectroscopy analysis revealed that the graphene oxide was reduced to reduced graphene oxide in the sintering process and the performances of the composite fiber were improved. The tensile strength of reduced graphene oxide/glass composite fiber was 20% higher than the pristine glass fibers by the addition of 0.5 wt% of reduced graphene oxide. Reduced graphene oxide content was positively correlated with composites conductivity, and according to the percolation theory, the percolation threshold of reduced graphene oxide/glass composite fiber was about 0.5 wt%, and the conductivity of the composite fibers was increased by four orders of magnitude compared to the pristine glass fibers when the content of reduced graphene oxide was 0.5 wt%.


2020 ◽  
Vol 12 (2) ◽  
pp. 52
Author(s):  
Sabina Elżbieta Drewniak ◽  
Roksana Muzyka ◽  
Łukasz Drewniak

The paper focused on the description of the reduced graphene oxide (rGO) structure. This material is obtained from a multistage production process. Each of these stages has a large impact on its structure (the number and type of functional groups, number of defect or the size of the flakes), and this in turn affects its properties. We would like to visualize the reduced graphene oxide, both using a diagram showing the atomic structure, as well as by imaging using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In the paper, the elementary composition of selected elements and data obtained from X-ray photoelectron spectroscopy technique (XPS) will be also presented. Full Text: PDF ReferencesX. Peng, Y. Wu, N. Chen, Z. Zhu, J. Liu, and H. Wang, "Facile and highly efficient preparation of semi-transparent, patterned and large-sized reduced graphene oxide films by electrochemical reduction on indium tin oxide glass surface", Thin Solid Films 692, 137626 (2019). CrossRef L. Guo, Y.-W. Hao, P.-L. Li, J.-F. Song, R.-Z. Yang, X.-Y. Fu, S.-Y. Xie, J. Zhao and Y.-L. Zhang, "Improved NO2 Gas Sensing Properties of Graphene Oxide Reduced by Two-beam-laser Interference", Sci. Rep. 8, 1 (2018). CrossRef Y. S. Milovanov, V.A. Skryshevsky, , O.M. Slobodian, , D.O. Pustovyi, X.Tang, J.-P. Raskin, and A.N. Nazarov, "Influence of Gas Adsorption on the Impedance of Graphene Oxide", 2019 IEEE 39th Int. Conf. Electron. Nanotechnology, ELNANO 2019 - Proc. 8783946, CrossRef M. Reddeppa, B.-G. Park, , M.-D. Kim, K.R. Peta, N.D. Chinh, D. Kim, S.-G. Kim, and G. Murali, "H2, H2S gas sensing properties of rGO/GaN nanorods at room temperature: Effect of UV illumination", Sensors Actuators B. Chem. 264, (2018). CrossRef W. L. Xu, C. Ding, , M.-S. Niu, X.-Y. Yang, F. Zheng, J. Xiao, M. Zheng and X.-T. Hao, "Reduced graphene oxide assisted charge separation and serving as transport pathways in planar perovskite photodetector", Org. Electron. 81, 105663 (2020). CrossRef K. Sarkar, M. Hossain, P. Devi, K. D. M. Rao, and P. Kumar, "Self‐Powered and Broadband Photodetectors with GaN: Layered rGO Hybrid Heterojunction", Adv. Mater. Interfaces, 6, 20 (2019). CrossRef S. Pei and H. M. Cheng, "The reduction of graphene oxide", Carbon, 50, 9 (2012). CrossRef R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, and G. Gryglewicz, "Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy", Materials 11, 7 (2018). CrossRef M.-H. Tran and H. K. Jeong, "Influence of the Grain Size of Precursor Graphite on the Synthesis of Graphite Oxide", New Phys. Sae Mulli, 63, 2 (2013). CrossRef M.-H. Tran, C.-S. Yang, S. Yang, I.-J. Kim, and H. K. Jeong, "Influence of graphite size on the synthesis and reduction of graphite oxides", Curr. Appl. Phys., 14, SUPPL. 1 (2014). CrossRef N. Sharma, Y. Jain, , M. Kumari, R. Gupta, S.K. Sharma, K. Sachdev, "Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application", Macromol. Symp. 376, 1 (2017). CrossRef M. Wei, L. Qiao, , H. Zhang, S. Karakalos, K. Ma, Z. Fu, M.T. Swihart, G. Wu, "Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions", Electrochim. Acta, 258 (2017). CrossRef S. Drewniak, M. Procek, R. Muzyka, T. Pustelny, "Comparison of Gas Sensing Properties of Reduced Graphene Oxide Obtained by Two Different Methods", Sensors, 20, 11 (2020). CrossRef L. Li, R.-D. Lv, S. -C. Liu, Z. D. Chen, J. Wang, Y.-G. Wang, W. Ren, "Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser", Chinese Physics Letters, 35, 11 (2018) CrossRef


2003 ◽  
Vol 50 (8) ◽  
pp. 1237-1244 ◽  
Author(s):  
M. K. Balakirev ◽  
V. A. Smirnov ◽  
L. I. Vostrikova ◽  
I. V. Kityk ◽  
J. Kasperczyk ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document