Antioxidant Molecules and Enzymes and Their Relevance to the Salt Adaptation of Halophytes

2021 ◽  
pp. 1459-1475
Author(s):  
Karim Ben Hamed ◽  
Amira Dabbous ◽  
Ayman Souid ◽  
Chedly Abdelly
Keyword(s):  
1979 ◽  
Vol 80 (1) ◽  
pp. 96-117 ◽  
Author(s):  
C Sardet ◽  
M Pisam ◽  
J Maetz

Various species of teleostean fishes were adapted to fresh or salt water and their gill surface epithelium was examined using several techniques of electron microscopy. In both fresh and salt water the branchial epithelium is mostly covered by flat respiratory cells. They are characterized by unusual outer membrane fracture faces containing intramembranous particles and pits in various stages of ordered aggregation. Freeze fracture studies showed that the tight junctions between respiratory cells are made of several interconnecting strands, probably representing high resistance junctions. The organization of intramembranous elements and the morphological characteristics of the junctions do not vary in relation to the external salinity. Towards the base of the secondary gill lamellae, the layer of respiratory cells is interrupted by mitochondria-rich cells ("chloride cells"), also linked to respiratory cells by multistranded junctions. There is a fundamental reorganization of the chloride cells associated with salt water adaptation. In salt water young adjacent chloride cells send interdigitations into preexisting chloride cells. The apex of the seawater chloride cell is therefore part of a mosaic of sister cells linked to surrounding respiratory cells by multistranded junctions. The chloride cells are linked to each other by shallow junctions made of only one strand and permeable to lanthanum. It is therefore suggested that salt water adaptation triggers a cellular reorganization of the epithelium in such a way that leaky junctions (a low resistance pathway) appear at the apex of the chloride cells. Chloride cells are characterized by an extensive tubular reticulum which is an extension of the basolateral plasma membrane. It is made of repeating units and is the site of numerous ion pumps. The presence of shallow junctions in sea water-adapted fish makes it possible for the reticulum to contact the external milieu. In contrast in the freshwater-adapted fish the chloride cell's tubular reticulum is separated by deep apical junctions from the external environment. Based on these observations we discuss how solutes could transfer across the epithelium.


Author(s):  
Johannes F. Imhoff ◽  
Toni Ditandy ◽  
Bernhard Thiemann
Keyword(s):  

IUBMB Life ◽  
1996 ◽  
Vol 40 (6) ◽  
pp. 1201-1209
Author(s):  
Wolfgang Nitschmann ◽  
Lester Packer

1999 ◽  
Vol 63 (2) ◽  
pp. 334-348 ◽  
Author(s):  
Aharon Oren

SUMMARY Examinination of microbial diversity in environments of increasing salt concentrations indicates that certain types of dissimilatory metabolism do not occur at the highest salinities. Examples are methanogenesis for H2 + CO2 or from acetate, dissimilatory sulfate reduction with oxidation of acetate, and autotrophic nitrification. Occurrence of the different metabolic types is correlated with the free-energy change associated with the dissimilatory reactions. Life at high salt concentrations is energetically expensive. Most bacteria and also the methanogenic archaea produce high intracellular concentrations of organic osmotic solutes at a high energetic cost. All halophilic microorganisms expend large amounts of energy to maintain steep gradients of NA+ and K+ concentrations across their cytoplasmic membrane. The energetic cost of salt adaptation probably dictates what types of metabolism can support life at the highest salt concentrations. Use of KCl as an intracellular solute, while requiring far-reaching adaptations of the intracellular machinery, is energetically more favorable than production of organic-compatible solutes. This may explain why the anaerobic halophilic fermentative bacteria (order Haloanaerobiales) use this strategy and also why halophilic homoacetogenic bacteria that produce acetate from H2 + CO2 exist whereas methanogens that use the same substrates in a reaction with a similar free-energy yield do not.


2017 ◽  
Vol 248 ◽  
pp. 43-47 ◽  
Author(s):  
Xinyue Zhao ◽  
Fang Ma ◽  
Cuijie Feng ◽  
Shunwen Bai ◽  
Jixian Yang ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 600
Author(s):  
Fengbin Dai ◽  
Aijia Li ◽  
Shupei Rao ◽  
Jinhuan Chen

Salt stress is a major constraint for many crops and trees. A wild species of Goji named Lycium ruthenicum is an important economic halophyte in China and has an extremely high tolerance to salinity. L. ruthenicum grows in saline soil and is known as a potash-rich species. However, its salt adaptation strategies and ion balance mechanism remains poorly understood. Potassium (K+) is one of the essential macronutrients for plant growth and development. In this study, a putative salt stress-responsive gene encoding a HAK (high-affinity K+)/KUP (K+ uptake)/KT (K+ transporter) transporter was cloned and designated as LrKUP8. This gene belongs to the cluster II group of the KT/HAK/KUP family. The expression of LrKUP8 was strongly induced under high NaCl concentrations. The OE-LrKUP8 calli grew significantly better than the vector control calli under salt stress conditions. Further estimation by ion content and micro-electrode ion flux indicated a relative weaker K+ efflux in the OE-LrKUP8 calli than in the control. Thus, a key gene involved in K+ uptake under salt condition was functionally characterized using a newly established L. ruthenicum callus transformation system. The importance of K+ regulation in L. ruthenicum under salt tolerance was highlighted.


Sign in / Sign up

Export Citation Format

Share Document