functional verification
Recently Published Documents


TOTAL DOCUMENTS

598
(FIVE YEARS 164)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaoning Luo ◽  
Sha Luo ◽  
Yaqi Fu ◽  
Chen Kong ◽  
Kai Wang ◽  
...  

MicroRNA (miRNA)-mediated gene regulation is involved in various physiological processes in plants. Flower color is one of the vital ornamental traits of tree peony (Paeonia suffruticosa Andr.). However, the yellow-flowered tree peony cultivars are particularly rare. To elucidate the miRNA-mediated gene regulatory mechanism underlying yellow pigmentation in tree peony, we combined pigment assessment, miRNA identification, expression analysis, and gene functional verification in two contrasting flower color cultivars “High Noon” and “Roufurong.” Flavones/flavonols and anthocyanins were found to be the main contributors to the coloration of “High Noon” and “Roufurong” petals, respectively. Subsequently, miRNA analysis based on available genome data identified 9 differentially expressed miRNAs and 12 relevant target genes implicated in flavonoid biosynthesis. Their dynamic expression patterns determined the key role of mdm-miR156b-PsSPL2 module in yellow pigmentation of tree peony flowers. The sequence analysis and subcellular localization validated that PsSPL2 might function as a nuclear-localized transcription factor. Overexpression of PsSPL2 in tobacco resulted in a decrease of anthocyanin content and down-regulation of NtF3′H and NtDFR transcripts. PsSPL2-silenced petals exhibited lighter yellow color, and the contents of THC, Ap, and Ch decreased significantly. Meanwhile, expression levels of PsCHS, PsCHI, and PsF3H were significantly decreased in the petals with PsSPL2 silencing, while those of PsF3′H and PsDFR were remarkably increased. This study offers a novel insight into yellow pigmentation-related miRNA regulation network in tree peony, and further provides the valuable information on physiological changes during yellow coloring process of tree peony.


2022 ◽  
Vol 17 (01) ◽  
pp. P01003
Author(s):  
M. Li ◽  
W. Wei ◽  
X. Jiang ◽  
S. Cui ◽  
J. Zhang ◽  
...  

Abstract HYLITE (High dYmamic range free electron Laser Imaging deTEctor) is a hybrid pixel detector readout chip, which is designed for advanced light sources such as X-ray Free Electron Laser (XFEL) and diffraction-limited storage rings. It is a charge-integration readout chip which has three gains for different dynamic ranges and automatic gain-switching function. The full dynamic range covered by HYLITE is 1 ∼ 104 photons with an energy of 12 keV for each pixel in every shot. In-pixel ADC is designed to achieve front-end digitization and a 10 kHz continuous frame rate. HYLITE0.1 is the first prototype chip for functional verification that was produced in CMOS 0.13 μm technology. It consists of a pixel array with 6 × 12 pixels and a periphery with full standalone operation features. The size of each pixel is 200 μm × 200 μm. Three design variations of pixels with different integrating capacitance and structures were designed to optimize between area and performance. A 10-bit Wilkinson ADC is integrated in each pixel to digitize the outputs of the pre-amplifier. Therefore, analog signal transmission of long distance is avoided and a frame rate of 10 kHz can be achieved. In this paper, we present the design of HYLITE0.1 and the test results of this prototype chip.


2021 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Johnnidel Tabucol ◽  
Tommaso Maria Brugo ◽  
Marco Povolo ◽  
Marco Leopaldi ◽  
Magnus Oddsson ◽  
...  

The prosthetic feet that are most often prescribed to individuals with K3/K4 levels of ambulation are the ESR feet. ESR stands for energy-storing and -releasing. The elastic energy is stored by the elastic elements in composite materials (carbon fiber or glass fiber). ESR feet must be developed and optimized in terms of stiffness, taking into account the loads that a healthy human foot undergoes and its kinematics while walking. So far, state-of-the-art analyses show that the literature approaches for prosthetic foot design are not based on a systematic methodology. With the aim of optimizing the stiffness of ESR feet following a methodological procedure, a methodology based on finite element structural analysis, standard static testing (ISO 10328) and functional verification was optimized and it is presented in this paper. During the path of optimization of the foot prototypes, this methodology was validated experimentally. It includes the following: (i) geometry optimization through two-dimensional finite element analysis; (ii) material properties optimization through three-dimensional finite element analysis; (iii) validation test on physical prototypes; (iv) functionality verification through dynamic finite element analysis. The design and functional verification of MyFlex-γ, a three-blade ESR foot prosthesis, is presented to describe the methodology and demonstrate its usability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuzhe Wang ◽  
Cuili Pan ◽  
Xiaojie Ma ◽  
Chaoyun Yang ◽  
Lin Tang ◽  
...  

The buffalo population is extensive in China, but its meat quality is relatively inferior. Therefore, improving meat quality should be one of the breeding goals. microRNAs (miRNAs) play an essential regulatory role in the post-transcriptional expression of genes. Some studies have reported their function regulating genes related to fat deposition and adipocyte differentiation in cattle, but there is limited reports in buffalo. We performed small RNA transcriptome sequencing of Xinyang buffalo adipose tissue between calves and adults in this study. As a result, 282 mature miRNAs were significantly differentially expressed, and co-expression analysis showed that 454 miRNAs were significantly associated with developmental stages. Target gene identification, GO (gene ontology) annotation, and KEGG analysis of miRNAs showed that miR-195, miR-192, and miR-24-3p could target key genes for lipogenesis and thus regulate adipose deposition and differentiation. Among them, miR-195 was significantly upregulated in adipose tissue and induced adipocytes of adult buffaloes, and its overexpression significantly inhibited lipid accumulation in primary adipocytes. Dual-luciferase reporter gene analysis showed that miR-195 reduced the expression of thyroid hormone response protein (THRSP) by targeting its 3′ untranslated terminal region, suggesting that miR-195 may inhibit lipid accumulation in adipocytes by regulating THRSP. The results confirmed the reliability of predictive screening of miRNAs and provided theoretical support for buffalo fattening.


Author(s):  
Rongtao Xue ◽  
Ying Wang ◽  
Tienan Wang ◽  
Mei Lyu ◽  
Guiling Mo ◽  
...  

ELMO1 (Engulfment and Cell Motility1) is a gene involved in regulating cell motility through the ELMO1-DOCK2-RAC complex. Contrary to DOCK2 (Dedicator of Cytokinesis 2) deficiency, which has been reported to be associated with immunodeficiency diseases, variants of ELMO1 have been associated with autoimmune diseases, such as diabetes and rheumatoid arthritis (RA). To explore the function of ELMO1 in immune cells and to verify the functions of novel ELMO1 variants in vivo, we established a zebrafish elmo1 mutant model. Live imaging revealed that, similar to mammals, the motility of neutrophils and T-cells was largely attenuated in zebrafish mutants. Consequently, the response of neutrophils to injury or bacterial infection was significantly reduced in the mutants. Furthermore, the reduced mobility of neutrophils could be rescued by the expression of constitutively activated Rac proteins, suggesting that zebrafish elmo1 mutant functions via a conserved mechanism. With this mutant, three novel human ELMO1 variants were transiently and specifically expressed in zebrafish neutrophils. Two variants, p.E90K (c.268G>A) and p.D194G (c.581A>G), could efficiently recover the motility defect of neutrophils in the elmo1 mutant; however, the p.R354X (c.1060C>T) variant failed to rescue the mutant. Based on those results, we identified that zebrafish elmo1 plays conserved roles in cell motility, similar to higher vertebrates. Using the transient-expression assay, zebrafish elmo1 mutants could serve as an effective model for human variant verification in vivo.


2021 ◽  
Author(s):  
Abdelrahman Adel ◽  
Dina Saad ◽  
Mahmoud Abd El Mawgoed ◽  
Mohamed Sharshar ◽  
Zyad Ahmed ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261391
Author(s):  
JingYi Huang ◽  
YanHua Chen ◽  
Juan Zhu ◽  
MeiXian Wang ◽  
ShunMing Tang ◽  
...  

To study the regulatory function of Bombyx mori (B. mori) miRNAs (bmo-miR) on the expression of fibroin light chain gene (BmFib-L), the 3’UTR of BmFib-L mRNA was used as the target for online prediction of miRNAs from miRBase using RNAhybrid Software, and miR-2845 was screened out. First, the expression profiles of miR-2845 and BmFib-L in larvae of the 5th instar were analyzed by Real-time quantitative PCR (RT-qPCR). Then recombinant plasmids (pcDNA3.0-pre-miR-2845 and pGL3.0-BmFib-L) were constructed to use for the expression of miR-2845 and BmFib-L 3’UTR, respectively. Cellular-level functional verification of miR-2845 on BmFib-L was carried out using multiple experimental methods (including dual luciferase reporter vectors, artificially synthesized mimics and inhibitors, and target site mutations). Finally, in vivo functional verification was performed by injecting the recombinant vector in 5th instar larvae. BmFib-L expression levels were detected using RT-qPCR in the posterior silk glands (PSG) of the injected larvae. Results showed that the expression of miR-2845 increased between the 1st and 5th day in 5th instar larvae, but began to decline on the 5th day, while the expression of the target gene BmFib-L increased sharply. This suggests that miR-2845 and BmFib-L expression levels show opposing trends, implying a negative regulatory relationship. In BmN cells, miR-2845 significantly down-regulated the expression of BmFib-L; the inhibitory effect of miR-2845 on BmFib-L was disappeared after mutation of the targeting site on 3’UTR of BmFib-L; in individuals, miR-2845 significantly down-regulated BmFib-L expression levels. Our results provide new experimental data for clarifying the molecular regulation mechanism of silk protein expression.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1867
Author(s):  
Martyna Fronczek ◽  
Joanna Katarzyna Strzelczyk ◽  
Krzysztof Biernacki ◽  
Silvia Salatino ◽  
Tadeusz Osadnik ◽  
...  

Background: Vitamin D is a fat-soluble cholesterol derivative found in two forms, vitamin D2, and vitamin D3. Cytochrome P450 2R1 (CYP2R1) encoded by the CYP2R1 gene is the major hydroxylase that activates vitamin D by catalyzing the formation of 25-hydroxyvitamin D (25(OH)D). Methods: We collected 89 (100%) subjects, 46 of which (51.69%) had a documented severe deficiency of 25(OH)D (<10 ng/mL) and 43 (48.31%) in the control group with documented optimum levels of 25(OH)D (>30 ng/mL). We performed Sanger sequencing of three selected fragments of the CYP2R1 gene (Ch11: 14878000–14878499; Ch11: 14880058–14880883 and Ch11: 14885321–14886113) that affect the binding of substrates to this enzyme and analyzed the possible involvement of genetic variation in these regions with an increased risk of vitamin D deficiency in healthy Polish individuals. Results: Two substitutions were found within the three fragments. Bioinformatic analysis suggested that one of these (NC_000011.10: g.14878291G>A) may influence the structure and function of CYP2R1. Conclusions: Variant NC_000011.10: g.14878291G>A may have a perturbing effect on heme binding in the active site of CYP2R1 and on the function of 25-hydroxylase and probably affects the concentration of 25(OH)D in vivo. We intend to perform functional verification in a larger patient population to confirm and extend these results.


2021 ◽  
Vol 11 (4) ◽  
pp. 48
Author(s):  
Wei-Chen Lin ◽  
Pokai Huang ◽  
Chung-Long Pan ◽  
Yu-Jung Huang

Medication safety administration is a complicated process involving the information of patients, drugs, and data storage. The sensitive data transmitted through wireless sensor networks (WSNs) from Internet of things (IoT) over an insecure channel is vulnerable to several threats and needs proper attention to be secured from adversaries. Taking medication safety into consideration, this paper presents a secure authentication protocol for wireless medical sensor networks. The XOR scheme-based algorithm is applied to achieve the purposes of data confidentiality. The proposed architecture is realized as hardware in a field-programmable gate array (FPGA) device which acts as a secure edge computing device. The performance of the proposed protocol is evaluated and simulated via Verilog hardware description language. The functionality of the proposed protocol is verified using the Altera Quartus II software tool and implemented in the Altera Cyclone II DE2-70 FPGA development module. Furthermore, the output signals from the FPGA are measured in the 16702A logic analyzer system to demonstrate real-time functional verification.


Sign in / Sign up

Export Citation Format

Share Document