BR-GAN: Bilateral Residual Generating Adversarial Network for Mammogram Classification

Author(s):  
Chu-ran Wang ◽  
Fandong Zhang ◽  
Yizhou Yu ◽  
Yizhou Wang
Keyword(s):  
2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


2011 ◽  
Author(s):  
Stephen P. Borgatti ◽  
Ajay Mehra ◽  
Elisa Bienenstock ◽  
Daniel S. Halgin

2020 ◽  
Author(s):  
Chengyun Deng ◽  
Yi Zhang ◽  
Shiqian Ma ◽  
Yongtao Sha ◽  
Hui Song ◽  
...  
Keyword(s):  

Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


2020 ◽  
Vol 155 ◽  
pp. 113404 ◽  
Author(s):  
Peng Liu ◽  
Ting Xiao ◽  
Cangning Fan ◽  
Wei Zhao ◽  
Xianglong Tang ◽  
...  

2019 ◽  
Vol 52 (21) ◽  
pp. 291-296 ◽  
Author(s):  
Minsung Sung ◽  
Jason Kim ◽  
Juhwan Kim ◽  
Son-Cheol Yu

Sign in / Sign up

Export Citation Format

Share Document