scholarly journals Dynamic Safety Certification for Collaborative Embedded Systems at Runtime

Author(s):  
David Santiago Velasco Moncada ◽  
Daniel Schneider ◽  
Ana Petrovska ◽  
Nishanth Laxman ◽  
Felix Möhrle ◽  
...  

AbstractTraditionally, integration and quality assurance of embedded systems are done entirely at development time. Moreover, since such systems often perform safety-critical tasks and work in human environments, safety analyses are performed and safety argumentations devised to convince certification authorities of their safety and to certify the systems if necessary. Collaborative embedded systems, however, are designed to integrate and collaborate with other systems dynamically at runtime. A complete prediction and analysis of all relevant properties during the design phase is usually not possible, as many influencing factors are not yet known. This makes the application of traditional safety analysis and certification techniques impractical, as they usually require a complete specification of the system and its context in advance. In the following chapter, we introduce new techniques to meet this challenge and outline a safety certification concept specifically tailored to collaborative embedded systems.

Author(s):  
Milan Štrbo ◽  
Pavol Tanuška ◽  
Augustín Gese

Abstract The aim of this article is the proposal of process of the safety analysis for complex dynamic systems in process of the proposal of control system for safety-critical processes. The method of safety analysis depends on various safety-critical states of system which are system are controlled by models. We propose to use the method SQMD for modeling these states. This method combines qualitative and quantitative methods of modeling states and takes advantage of both methods. The model of the proposal is shown in the diagram. The article includes detailed description of the tasks for each step of analysis.


2016 ◽  
Vol 95 ◽  
pp. 32-39 ◽  
Author(s):  
Jean-Yves Choley ◽  
Faïda Mhenni ◽  
Nga Nguyen ◽  
Anis Baklouti

2020 ◽  
Vol 10 (9) ◽  
pp. 3125
Author(s):  
Saad Mubeen ◽  
Elena Lisova ◽  
Aneta Vulgarakis Feljan

Cyber Physical Systems (CPSs) are systems that are developed by seamlessly integrating computational algorithms and physical components, and they are a result of the technological advancement in the embedded systems and distributed systems domains, as well as the availability of sophisticated networking technology. Many industrial CPSs are subject to timing predictability, security and functional safety requirements, due to which the developers of these systems are required to verify these requirements during the their development. This position paper starts by exploring the state of the art with respect to developing timing predictable and secure embedded systems. Thereafter, the paper extends the discussion to time-critical and secure CPSs and highlights the key issues that are faced when verifying the timing predictability requirements during the development of these systems. In this context, the paper takes the position to advocate paramount importance of security as a prerequisite for timing predictability, as well as both security and timing predictability as prerequisites for functional safety. Moreover, the paper identifies the gaps in the existing frameworks and techniques for the development of time- and safety-critical CPSs and describes our viewpoint on ensuring timing predictability and security in these systems. Finally, the paper emphasises the opportunities that artificial intelligence can provide in the development of these systems.


Sign in / Sign up

Export Citation Format

Share Document