Medical Visualization Using 3D Imaging and Volume Data: A Survey

Author(s):  
Ismail Bahkali ◽  
Sudhanshu Kumar Semwal
2009 ◽  
Vol 9 ◽  
pp. 1423-1437 ◽  
Author(s):  
Stefan H. Geyer ◽  
Timothy J. Mohun ◽  
Wolfgang J. Weninger

The creation of highly detailed, three-dimensional (3D) computer models is essential in order to understand the evolution and development of vertebrate embryos, and the pathogenesis of hereditary diseases. A still-increasing number of methods allow for generating digital volume data sets as the basis of virtual 3D computer models. This work aims to provide a brief overview about modern volume data–generation techniques, focusing on episcopic 3D imaging methods. The technical principles, advantages, and problems of episcopic 3D imaging are described. The strengths and weaknesses in its ability to visualize embryo anatomy and labeled gene product patterns, specifically, are discussed.


1994 ◽  
Author(s):  
R. Marabini ◽  
C. Vaquerizo ◽  
Jose J. Fernandez ◽  
Jose Maria Carazo ◽  
M. Ladjadj ◽  
...  

Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


Author(s):  
EA Rodegerdts ◽  
A Boss ◽  
K Riemarzik ◽  
M Lichy ◽  
F Schick ◽  
...  
Keyword(s):  
3 Tesla ◽  

2018 ◽  
Vol 7 (1) ◽  
pp. 51-60
Author(s):  
Fitri Wulandari ◽  
Nirwana Puspasari ◽  
Noviyanthy Handayani

Jalan Temanggung Tilung is a 2/2 UD type road (two undirected two-way lanes) with a road width of 5.5 meters, which is a connecting road between two major roads, namely the RTA road. Milono and the path of G. Obos. Over time, the volume of traffic through these roads increases every year, plus roadside activities that also increase cause congestion at several points of the way. To overcome this problem, the local government carried out road widening to increase the capacity and level of road services. The study was conducted to determine the amount of traffic volume, performance, service level of the Temanggung Tilung road section at peak traffic hours before and after road widening. Data retrieval is done by the direct survey to the field to obtain primary data in the form of geometric road data, two-way traffic volume data, and side obstacle data. Performance analysis refers to the 1997 Indonesian Road Capacity Manual (MKJI) for urban roads. From the results of data processing, before increasing the road (Type 2/2 UD), the traffic volume that passes through the path is 842 pcs/hour and after road widening (Type 4/2 UD) the traffic volume for two directions is 973 pcs/hour, with route A equaling 528 pcs/hour and direction B equaling 445 pcs/hour. Based on the analysis of road performance before road enhancement, the capacity = 2551 pcs/hour, saturation degree = 0.331, and the service level of the two-way road are level B. Based on the analysis of the performance of the way after increasing the way, the direction capacity A = 2686 pcs/hour and direction B = 2674 pcs /hour, saturation degree for direction A = 0.196 and direction B = 0.166, service level for road direction A and direction B increase to level A


2018 ◽  
Vol 2018 (1) ◽  
pp. 151-156
Author(s):  
Scott Geffert ◽  
Daniel Hausdorf ◽  
Joseph Coscia ◽  
Oi-Cheong Lee ◽  
Dahee Han ◽  
...  

2019 ◽  
Vol 30 (5) ◽  
pp. 292-295
Author(s):  
A.N. Kulikov ◽  
◽  
E.V. Kudryashova ◽  
V.N. Gavrilyuk ◽  
D.S. Maltsev ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document