2019 ◽  
Vol 52 (5) ◽  
pp. 191-196 ◽  
Author(s):  
Dániel Fényes ◽  
Balázs Németh ◽  
Péter Gáspar

2019 ◽  
Vol 6 (2) ◽  
pp. 2021-2034 ◽  
Author(s):  
Qimei Cui ◽  
Yingze Wang ◽  
Kwang-Cheng Chen ◽  
Wei Ni ◽  
I-Cheng Lin ◽  
...  

2020 ◽  
Vol 10 (21) ◽  
pp. 7858
Author(s):  
Aelee Yoo ◽  
Sooyeon Shin ◽  
Junwon Lee ◽  
Changjoo Moon

To provide a service that guarantees driver comfort and safety, a platform utilizing connected car big data is required. This study first aims to design and develop such a platform to improve the function of providing vehicle and road condition information of the previously defined central Local Dynamic Map (LDM). Our platform extends the range of connected car big data collection from OBU (On Board Unit) and CAN to camera, LiDAR, and GPS sensors. By using data of vehicles being driven, the range of roads available for analysis can be expanded, and the road condition determination method can be diversified. Herein, the system was designed and implemented based on the Hadoop ecosystem, i.e., Hadoop, Spark, and Kafka, to collect and store connected car big data. We propose a direction of the cooperative intelligent transport system (C-ITS) development by showing a plan to utilize the platform in the C-ITS environment.


2018 ◽  
Vol 1 (5) ◽  
pp. e36 ◽  
Author(s):  
Klaudia Reddig ◽  
Błażej Dikunow ◽  
Karolina Krzykowska

2021 ◽  
Vol 10 (3) ◽  
pp. 165
Author(s):  
Joerg Schweizer ◽  
Cristian Poliziani ◽  
Federico Rupi ◽  
Davide Morgano ◽  
Mattia Magi

A large-scale agent-based microsimulation scenario including the transport modes car, bus, bicycle, scooter, and pedestrian, is built and validated for the city of Bologna (Italy) during the morning peak hour. Large-scale microsimulations enable the evaluation of city-wide effects of novel and complex transport technologies and services, such as intelligent traffic lights or shared autonomous vehicles. Large-scale microsimulations can be seen as an interdisciplinary project where transport planners and technology developers can work together on the same scenario; big data from OpenStreetMap, traffic surveys, GPS traces, traffic counts and transit details are merged into a unique transport scenario. The employed activity-based demand model is able to simulate and evaluate door-to-door trip times while testing different mobility strategies. Indeed, a utility-based mode choice model is calibrated that matches the official modal split. The scenario is implemented and analyzed with the software SUMOPy/SUMO which is an open source software, available on GitHub. The simulated traffic flows are compared with flows from traffic counters using different indicators. The determination coefficient has been 0.7 for larger roads (width greater than seven meters). The present work shows that it is possible to build realistic microsimulation scenarios for larger urban areas. A higher precision of the results could be achieved by using more coherent data and by merging different data sources.


Author(s):  
В. Б. Бетелин ◽  
В. А. Галкин ◽  
А. О. Дубовик

Искусственные нейронные сети (ИНС) в настоящее время являются полем интенсивных исследований. Они зарекомендовали себя при решении задач распознавания образов, аудио и текстовой информации. Планируется их применение в медицине, в беспилотных автомобилях и летательных аппаратах. Однако крайне мало научных работ посвящено обсуждению возможности построения искусственного интеллекта (ИИ), способного эффективно решать очерченный круг задач. Отсутствует гарантия штатного функционирования ИИ в любой реальной, а не специально созданной ситуации. В данной работе предпринимается попытка обоснования ненадежности функционирования современных искусственных нейронных сетей. Показывается, что задача построения интерполяционных многочленов является прообразом проблем, возникающих при создании ИНС. Известны примеры К.Д.Т. Рунге, С.Н. Бернштейна и общая теорема Фабера о том, что для любого наперед заданного натурального числа, соответствующего количеству узлов в интерполяционной таблице, найдется точка из области интерполяции и непрерывная функция, что интерполяционный многочлен не сходится к значению функции в этой точке при неограниченном росте числа узлов. Отсюда следует невозможность обеспечения эффективной работы ИИ лишь за счет неограниченного роста числа нейронов и объемов данных (Big Data), используемых в качестве обучающих выборок. Artificial neural networks (ANN) are currently a field of intensive research. They are a proven pattern/audio/text recognition tool. ANNs will be used in medicine, autonomous vehicles, and drones. Still, very few works discuss building artificial intelligence (AI) that can effectively solve the mentioned problems. There is no guarantee that AI will operate properly in any reallife, not simulated situation. In this work, an attempt is made to prove the unreliability of modern artificial neural networks. It is shown that constructing interpolation polynomials is a prototype of the problems associated with the ANN generation. There are examples by C.D.T. Runge, S.N. Bernstein, and the general Faber theorem stating that for any predetermined natural number corresponding to the number of nodes in the lookup table there is a point from the interpolation region and a continuous function that the interpolation polynomial does not converge to the value of the function at this point as the number of nodes increases indefinitely. This means the impossibility of ensuring efficient AI operation only by an unlimited increase in the number of neurons and data volumes (Big Data) used as training datasets.


Sign in / Sign up

Export Citation Format

Share Document