Deep Image Prior and Structural Variation-Based Super-Resolution Network for Fluorescein Fundus Angiography Images

Author(s):  
R. Velumani ◽  
S. Bama ◽  
M. Victor Jose
Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 2014
Author(s):  
Sujy Han ◽  
Tae Bok Lee ◽  
Yong Seok Heo

Single image super-resolution task aims to reconstruct a high-resolution image from a low-resolution image. Recently, it has been shown that by using deep image prior (DIP), a single neural network is sufficient to capture low-level image statistics using only a single image without data-driven training such that it can be used for various image restoration problems. However, super-resolution tasks are difficult to perform with DIP when the target image is noisy. The super-resolved image becomes noisy because the reconstruction loss of DIP does not consider the noise in the target image. Furthermore, when the target image contains noise, the optimization process of DIP becomes unstable and sensitive to noise. In this paper, we propose a noise-robust and stable framework based on DIP. To this end, we propose a noise-estimation method using the generative adversarial network (GAN) and self-supervision loss (SSL). We show that a generator of DIP can learn the distribution of noise in the target image with the proposed framework. Moreover, we argue that the optimization process of DIP is stabilized when the proposed self-supervision loss is incorporated. The experiments show that the proposed method quantitatively and qualitatively outperforms existing single image super-resolution methods for noisy images.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Richard Evan Sutanto ◽  
Sukho Lee

Several recent studies have shown that artificial intelligence (AI) systems can malfunction due to intentionally manipulated data coming through normal channels. Such kinds of manipulated data are called adversarial examples. Adversarial examples can pose a major threat to an AI-led society when an attacker uses them as means to attack an AI system, which is called an adversarial attack. Therefore, major IT companies such as Google are now studying ways to build AI systems which are robust against adversarial attacks by developing effective defense methods. However, one of the reasons why it is difficult to establish an effective defense system is due to the fact that it is difficult to know in advance what kind of adversarial attack method the opponent is using. Therefore, in this paper, we propose a method to detect the adversarial noise without knowledge of the kind of adversarial noise used by the attacker. For this end, we propose a blurring network that is trained only with normal images and also use it as an initial condition of the Deep Image Prior (DIP) network. This is in contrast to other neural network based detection methods, which require the use of many adversarial noisy images for the training of the neural network. Experimental results indicate the validity of the proposed method.


2021 ◽  
Author(s):  
Li Ding ◽  
Yongwei Wang ◽  
Xin Ding ◽  
Kaiwen Yuan ◽  
Ping Wang ◽  
...  
Keyword(s):  

Author(s):  
Fangshu Yang ◽  
Thanh-an Pham ◽  
Nathalie Brandenberg ◽  
Matthias P. Lutolf ◽  
Jianwei Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document