linear mixture model
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 13 (20) ◽  
pp. 4085
Author(s):  
Kenta Obata ◽  
Kenta Taniguchi ◽  
Masayuki Matsuoka ◽  
Hiroki Yoshioka

This study presents a new method that mitigates biases between the normalized difference vegetation index (NDVI) from geostationary (GEO) and low Earth orbit (LEO) satellites for Earth observation. The method geometrically and spectrally transforms GEO NDVI into LEO-compatible GEO NDVI, in which GEO’s off-nadir view is adjusted to a near-nadir view. First, a GEO-to-LEO NDVI transformation equation is derived using a linear mixture model of anisotropic vegetation and nonvegetation endmember spectra. The coefficients of the derived equation are a function of the endmember spectra of two sensors. The resultant equation is used to develop an NDVI transformation method in which endmember spectra are automatically computed from each sensor’s data independently and are combined to compute the coefficients. Importantly, this method does not require regression analysis using two-sensor NDVI data. The method is demonstrated using Himawari 8 Advanced Himawari Imager (AHI) data at off-nadir view and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data at near-nadir view in middle latitude. The results show that the magnitudes of the averaged NDVI biases between AHI and MODIS for five test sites (0.016–0.026) were reduced after the transformation (<0.01). These findings indicate that the proposed method facilitates the combination of GEO and LEO NDVIs to provide NDVIs with smaller differences, except for cases in which the fraction of vegetation cover (FVC) depends on the view angle. Further investigations should be conducted to reduce the remaining errors in the transformation and to explore the feasibility of using the proposed method to predict near-real-time and near-nadir LEO vegetation index time series using GEO data.


2021 ◽  
Vol 257 ◽  
pp. 112359
Author(s):  
Jie Yu ◽  
Bin Wang ◽  
Yi Lin ◽  
Fengting Li ◽  
Jianqing Cai

2020 ◽  
Author(s):  
Joyce B. Kang ◽  
Aparna Nathan ◽  
Nghia Millard ◽  
Laurie Rumker ◽  
D. Branch Moody ◽  
...  

AbstractRecent advances in single-cell technologies and integration algorithms make it possible to construct large, comprehensive reference atlases from multiple datasets encompassing many donors, studies, disease states, and sequencing platforms. Much like mapping sequencing reads to a reference genome, it is essential to be able to map new query cells onto complex, multimillion-cell reference atlases to rapidly identify relevant cell states and phenotypes. We present Symphony, a novel algorithm for building compressed, integrated reference atlases of ≥106 cells and enabling efficient query mapping within seconds. Based on a linear mixture model framework, Symphony precisely localizes query cells within a low-dimensional reference embedding without the need to reintegrate the reference cells, facilitating the downstream transfer of many types of reference-defined annotations to the query cells. We demonstrate the power of Symphony by (1) mapping a query containing multiple levels of experimental design to predict pancreatic cell types in human and mouse, (2) localizing query cells along a smooth developmental trajectory of human fetal liver hematopoiesis, and (3) harnessing a multimodal CITE-seq reference atlas to infer query surface protein expression in memory T cells. Symphony will enable the sharing of comprehensive integrated reference atlases in a convenient, portable format that powers fast, reproducible querying and downstream analyses.


Author(s):  
Mao Wang ◽  
Aili Jiang ◽  
Lijuan Gong ◽  
Lina Lu ◽  
Wenbin Guo ◽  
...  

AbstractBackgroundThere is no evidence supporting that temperature changes COVID-19 transmission.MethodsWe collected the cumulative number of confirmed cases of all cities and regions affected by COVID-19 in the world from January 20 to February 4, 2020, and calculated the daily means of the average, minimum and maximum temperatures in January. Then, restricted cubic spline function and generalized linear mixture model were used to analyze the relationships.ResultsThere were in total 24,139 confirmed cases in China and 26 overseas countries. In total, 16,480 cases (68.01%) were from Hubei Province. The lgN rose as the average temperature went up to a peak of 8.72°C and then slowly declined. The apexes of the minimum temperature and the maximum temperature were 6.70°C and 12.42°C respectively. The curves shared similar shapes. Under the circumstance of lower temperature, every 1°C increase in average, minimum and maximum temperatures led to an increase of the cumulative number of cases by 0.83, 0.82 and 0.83 respectively. In the single-factor model of the higher-temperature group, every 1°C increase in the minimum temperature led to a decrease of the cumulative number of cases by 0.86.ConclusionThe study found that, to certain extent, temperature could significant change COVID-19 transmission, and there might be a best temperature for the viral transmission, which may partly explain why it first broke out in Wuhan. It is suggested that countries and regions with a lower temperature in the world adopt the strictest control measures to prevent future reversal.


2020 ◽  
Vol 68 ◽  
pp. 4481-4496
Author(s):  
Addison W. Bohannon ◽  
Vernon J. Lawhern ◽  
Nicholas R. Waytowich ◽  
Radu V. Balan

Author(s):  
Shigeharu Sato ◽  
Bumpei Tojo ◽  
Tomonori Hoshi ◽  
Lis Izni Fanirah Minsong ◽  
Omar Kwang Kugan ◽  
...  

Plasmodium knowlesi (Pk) is a malaria parasite that naturally infects macaque monkeys in Southeast Asia. Pk malaria, the zoonosis transmitted from the infected monkeys to the humans by Anopheles mosquito vectors, is now a serious health problem in Malaysian Borneo. To create a strategic plan to control Pk malaria, it is important to estimate the occurrence of the disease correctly. The rise of Pk malaria has been explained as being due to ecological changes, especially deforestation. In this research, we analysed the time-series satellite images of MODIS (MODerate-resolution Imaging Spectroradiometer) of the Kudat Peninsula in Sabah and created the “Pk risk map” on which the Land-Use and Land-Cover (LULC) information was visualised. The case number of Pk malaria of a village appeared to have a correlation with the quantity of two specific LULC classes, the mosaic landscape of oil palm groves and the nearby land-use patches of dense forest, surrounding the village. Applying a Poisson multivariate regression with a generalised linear mixture model (GLMM), the occurrence of Pk malaria cases was estimated from the population and the quantified LULC distribution on the map. The obtained estimations explained the real case numbers well, when the contribution of another risk factor, possibly the occupation of the villagers, is considered. This implies that the occurrence of the Pk malaria cases of a village can be predictable from the population of the village and the LULC distribution shown around it on the map. The Pk risk map will help to assess the Pk malaria risk distributions quantitatively and to discover the hidden key factors behind the spread of this zoonosis.


2019 ◽  
Vol 33 (10) ◽  
Author(s):  
Menelaos Konstantinidis ◽  
Kristen Cote ◽  
Emmanuel A. Lalla ◽  
Guanlin Zhang ◽  
Michael G. Daly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document