Geology and Petrogeochemical Features of the Kumak Ore Field Carbonaceous Shales

Author(s):  
A. V. Kolomoets ◽  
A. V. Snachev
Keyword(s):  
2011 ◽  
Vol 149 (1) ◽  
pp. 19-38 ◽  
Author(s):  
ALI SHEKARIFARD ◽  
FRANÇOIS BAUDIN ◽  
KAZEM SEYED-EMAMI ◽  
JOHANN SCHNYDER ◽  
FATIMA LAGGOUN-DEFARGE ◽  
...  

AbstractOrganic petrography and geochemical analyses have been carried out on shales, carbonaceous shales and coals of the Shemshak Group (Upper Triassic–Middle Jurassic) from 15 localities along the Alborz Range of Northern Iran. Thermal maturity of organic matter (OM) has been investigated using vitrinite reflectance, Rock-Eval pyrolysis and elemental analysis of kerogen. Reflectance of autochthonous vitrinite varies from 0.6 to 2.2% indicating thermally early-mature to over-mature OM in the Shemshak Group, in agreement with other maturity parameters used. The shales of the Shemshak Group are characterized by poor to high residual organic carbon contents (0.13 to 5.84%) and the presence of hydrogen-depleted OM, predominantly as a consequence of oxidation of OM at the time of deposition and the hydrogen loss during petroleum generation. According to light-reflected microscopy results, vitrinite/vitrinite-like macerals are dominant in the kerogen concentrates from the shaly facies. The coals and carbonaceous shales of the Shemshak Group show a wide range in organic carbon concentration (3.5 to 88.6%) and composition (inertinite- and vitrinite-rich types), and thereby different petroleum potentials. Thermal modelling results suggest that low to moderate palaeo-heat flow, ranging from 47 to 79 mW m−2 (57 mW m−2 on average), affected the Central-Eastern Alborz basin during Tertiary time, the time of maximum burial of the Shemshak Group. The maximum temperature that induced OM maturation of the Shemshak Group seems to be related to its deep burial rather than to a very strong heat flow related to an uppermost Triassic–Liassic rifting. The interval of petroleum generation in the most deeply buried part of the Shemshak Group (i.e. Tazareh section) corresponds to Middle Jurassic–Early Cretaceous times. Exhumation of the Alborz Range during Late Neogene time, especially along the axis of the Central-Eastern Alborz, where maximum vitrinite reflectance values are recorded, probably destroyed possible petroleum accumulations. However, on the northern flank of the Central-Eastern Alborz, preservation of petroleum accumulations may be expected. The northern part of the basin therefore seems the best target for petroleum exploration.


2020 ◽  
Vol 57 (11) ◽  
pp. 1289-1304
Author(s):  
Brandon M. Keough ◽  
Olivia A. King ◽  
Matthew R. Stimson ◽  
Page C. Quinton ◽  
Michael C. Rygel

The Maritimes Basin of Atlantic Canada contains a rich record of Pennsylvanian cyclothems. Previous studies have focused on rapidly subsiding depocenters in the central part of the basin where Carboniferous successions feature cyclic alternations between terrestrial and marginal marine strata. In contrast, the Pennsylvanian Clifton Formation was deposited on the relatively stable New Brunswick platform and contains almost entirely terrestrial strata. Although early studies of the Clifton Formation noted a cyclic architecture, particularly within Member B, this unit has remained understudied. We provide a sedimentological and sequence stratigraphic framework for the lower 85 m of Member B and interpret our results relative to a broader regional framework. Near the base of the study interval, the highstand systems tract is composed of red floodplain mudrocks; overlying sequence boundaries are composed of calcretes and (or) channels. The transgressive systems tract and maximum flooding surface are represented by coals and aquatic bivalve-bearing mudrocks. Moving upward through the section, the architecture of the highstand systems tract remains largely unchanged while sequence-bounding paleosols become less well developed, the transgressive systems tract becomes thinner and eventually not preserved, and the maximum flooding surface is only occasionally preserved, possibly represented by carbonaceous shales. These changes in cyclic architecture may be attributed to changes in the magnitude of glacioeustatic fluctuations, climate, and (or) the accommodation/sediment supply ratio. The results of this study show that the Clifton Formation represents the terrestrial/proximal endmember for cyclicity in the Maritimes Basin and provide new insight into paleotopography as a possible control on cyclothem architecture.


2012 ◽  
Vol 52 (1) ◽  
pp. 603
Author(s):  
Maqsood Ahmad ◽  
Ali Hussain ◽  
Reuben Koo ◽  
Hoang Nguyen's ◽  
Manouchehr Haghighi

Organically rich shale rocks represent a voluminous, long-term, global source of natural gas and could be referred to as shale gas. Unlike conventional gas reservoirs, shale gas reservoirs have very low effective porosity and permeability. Therefore, an evaluation of porosity in such a tight rock is a challenge. The Roseneath and Murtree shale formations in the Cooper Basin are believed to be potential shale gas reservoirs in SA. Core samples of Murteree and Roseneath carbonaceous shales from the Della–4 and Moomba–46 wells were collected to measure interstitial and intergranular porosity in these prospective shale gas reservoirs in the Nappamerri Trough. After initial preparation, the shale core samples were investigated to determine the pore size classification and effective free porosity using the mercury injection capillary pressure technique (MCIP). The focused ion beam/scanning electron microscopy (FIB/SEM) technique was then employed to obtain micro and nano scale images of the core samples. Then, helium porosimetry was used on the samples to measure their effective porosity. Finally, the pyknometry method was used on the crushed samples to measure their total intergranular porosity. MICP techniques revealed that the samples were mainly comprised of meso-porosity, with the pore throat diameters between 2–50 nanometres and an effective porosity of less than 2%. Helium porosimetry also showed an average porosity of less than 2%. Liquid pyknometry revealed an average absolute porosity of 30.5% for Murteree shale and 39% for the the Roseneath shale, which is much higher than the results from the MCIP technique and helium porosimetry. This is an indication of having very high isolated porosity and very low permeability. The findings were analysed and validated by the use of SEM images, displaying high amounts of isolated porosity, confirming the high porosity measurement from the pyknometry technique. The results achieved strongly emphasised that gas prone, over-mature, carbonaceous shales have very low effective but very high total porosity. Therefore, it is envisaged that total intergranular porosity holding compressed gas in over-mature source rocks cannot be evaluated using the helium porosimetry and mercury injection techniques. The pyknometry technique supported by the SEM images is an alternative method; however, this method can only measure total, rather than effective, porosity.


1973 ◽  
Vol 13 (1) ◽  
pp. 33
Author(s):  
George E. Williams

Sediments of three major basins occur in the Simpson Desert region of central Australia:Cambro -Ordovician dolomites and sandstones, and Siluro- Devonian conglomerates, sandstones and shales, related to the Amadeus Basin:Permian conglomerates, sandstones, shales and coals of the Simpson Desert Sub-basin, the extensive eastern lobe of the Pedirka Basin:Mesozoic sandstones and shales of the Eromanga Basin.Principal petroleum exploration interest is presently directed toward the Permian sediments, which have many features in common with the petroleum producing Permian section of the neighbouring Cooper Basin.Lower Permian sediments known from drilling in the Simpson Desert Sub-basin comprise glaciofluvial conglomerates and sandstones overlain by fluvial and lacustrine sandstones, silt-stones, shales and coals. The maximum thickness encountered in wells is 1,479 ft (448 m) in Mokari 1.Recent seismic exploration 50 to 100 mi (80-160 km) west of Poeppel Corner in the deeper part of the Simpson Desert Sub-basin indicates that an additional sediment package up to 1,500 ft (350 m) thick occurs at depths of 6,500 to 7,500 ft (2,000-2,300 m) between Lower Permian and Lower Jurassic sections. This sediment package, nowhere penetrated by drilling, may be Middle to Upper Permian and/or Triassic in age. It is of great significance to petroleum exploration in the sub-basin and substantially upgrades the hydrocarbon prospects of the region.Permian sediments in the Simpson Desert Sub-basin thin by onlap, wedge out and stripping over the crests of anticlinal growth structures. Crestal sediments probably comprise mainly porous sandstones, grading off-structure into thicker sequences containing carbonaceous shales and coals. Such carbonaceous potential source rocks are probably best developed in the deepest part of the sub-basin, where Triassic cap rock may also be present. Two particularly promising drilling targets—the Colson Anticline and the East Colson Anticline—have been revealed by recent geophysical surveys in this portion of the sub-basin. Wells drilled on these structures may intersect Permo-Triassic sediments up to 2,200 + ft (670 in) thick which are comparable in age and type with producing sections in the Cooper Basin.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 78 ◽  
Author(s):  
Nina Kolpakova ◽  
Zhamilya Sabitova ◽  
Victor Sachkov ◽  
Rodion Medvedev ◽  
Roman Nefedov ◽  
...  

Techniques of stripping voltammetry (SV) determination of silver and gold in pyrites and carbonaceous matter are developed. The problem of quantitative transfer of the analytes into the solution is solved. For this purpose, the ore matrix of carbonaceous shales was decomposed by mineral acids in autoclaves at high pressures. The element to be determined from the sample matrix was separated by extraction. Ag(I) ions from the solutions were extracted in the form of a dithizonate complex in CCl4. Au(III) ions were extracted by diethyl ether. The extracts were decomposed thermally. The dry residue was dissolved in the background electrolyte, and the element was determined by the SV method. The graphite electrode (GE) impregnated with polyethylene was used as a working electrode in the SV determination of silver. The SV determination of gold was carried out using a GE modified by bismuth. The limits of detection (LOD) of Ag(I) and Au(III) contents were equal to 0.016 mg L−1 and 0.0086 mg L−1, respectively. The results of SV determination of gold and silver in standard samples, pyrites, and carbonaceous shales were presented. The silver content in the pyrite was 13.6 g t−1, and in carbon shale it was 0.34 g t−1. The concentration of gold in the pyrite of the Kirovsko–Kryklinskaya ore zone was 1.15 g t−1, while in carbonaceous shales it was 2.66 g t−1. The obtained data were consistent with the data of atomic emission spectroscopy (AES) and inductively-coupled plasma mass spectrometry (ICP–MS). The error of determination of elements by stripping voltammetry was calculated as ranging from 10 to 6 g t−1 (less than 12%) in pyrite and carbonaceous material when determining the silver content, and from 1 to 3 g t−1 (less than 22%) when determining the gold content in pyrite and carbonaceous matter.


2020 ◽  
pp. 24-29
Author(s):  
A. V. Snachev ◽  
◽  
V. I. Snachev ◽  
M. A. Rassomakhin ◽  
A. V. Kolomoets ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document