intergranular porosity
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 251 ◽  
pp. 658-666
Author(s):  
Vitaly Zhukov ◽  
Yuri Kuzmin

The paper is devoted to studies of the volumetric response of rocks caused by changes in their stress state. Changes in the volume of fracture and intergranular components of the pore space based on measurements of the volume of pore fluid extruded from a rock sample with an increase in its  all-round compression have been experimentally obtained and analyzed.  Determination of the fracture and intergranular porosity components is based on the authors' earlier proposed method of their calculation using the values of longitudinal wave velocity and total porosity. The results of experimental and analytical studies of changes in porosity and its two components (intergranular and fractured) under the action of effective stresses are considered. This approach allowed the authors to estimate the magnitude  of the range of changes in the volumetric compressibility of both intergranular pores and fractures in a representative collection of 37 samples of the Vendian-age sand reservoir of the Chayanda field. The method of separate estimation of the compressibility coefficients of fractures and intergranular pores is proposed, their values and dependence on the effective pressure are experimentally obtained. It is determined that the knowledge of the values of fracture and intergranular porosity volumetric compressibility will increase the reliability of estimates of changes in petrophysical parameters of oil and gas reservoirs caused by changes in the stress state during the development of hydrocarbon fields.



Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 927
Author(s):  
Khiat Abd Elmadjid ◽  
Felicia Gheorghiu ◽  
Mokhtar Zerdali ◽  
Ina Turcan ◽  
Saad Hamzaoui

PbTi1−xFexO3−δ (x = 0, 0.3, 0.5, and 0.7) ceramics were prepared using the classical solid-state reaction method. The investigated system presented properties that were derived from composition, microstructure, and oxygen deficiency. The phase investigations indicated that all of the samples were well crystallized, and the formation of a cubic structure with small traces of impurities was promoted, in addition to a tetragonal structure, as Fe3+ concentration increased. The scanning electron microscopy (SEM) images for PbTi1−xFexO3−δ ceramics revealed microstructures that were inhomogeneous with an intergranular porosity. The dielectric permittivity increased systematically with Fe3+ concentration, increasing up to x = 0.7. A complex impedance analysis revealed the presence of multiple semicircles in the spectra, demonstrating a local electrical inhomogeneity due the different microstructures and amounts of oxygen vacancies distributed within the sample. The increase of the substitution with Fe3+ ions onto Ti4+ sites led to the improvement of the magnetic properties due to the gradual increase in the interactions between Fe3+ ions, which were mediated by the presence of oxygen vacancies. The PbTi1−xFexO3−δ became a multifunctional system with reasonable dielectric, piezoelectric, and magnetic characteristics, making it suitable for application in magnetoelectric devices.



Author(s):  
Fadhil N. Sadooni ◽  
Hamad Al-Saad Al-Kuwari ◽  
Ahmad Sakhaee-Pour ◽  
Wael S. Matter

Introduction: The Jurassic Arab Formation is the main oil reservoir in Qatar. The Formation consists of a succession of limestone, dolomite, and anhydrite. Materials and methods: A multi-proxy approach has been used to study the Formation. This approach is based on core analysis, thin sections, and log data in selected wells in Qatar. Results: The reservoir has been divided into a set of distinctive petrophysical units. The Arab Formation consists of cyclic sediments of oolitic grainstone/packstone, foraminifera-bearing packstone-wackestone, lagoonal mudstone and dolomite, alternating with anhydrite. The sediments underwent a series of diagenetic processes such as leaching, micritization, cementation, dolomitization and fracturing. The impact of these diagenetic processes on the different depositional fabrics created a complex porosity system. So, in some cases there is preserved depositional porosity such as the intergranular porosity in the oolitic grainstone, but in other cases, diagenetic cementation blocked the same pores and eventually destroyed them. In other cases, diagenesis improved the texture of non-porous depositional texture such as mudstone through incipient dolomitization creating inter-crystalline porosity. Dissolution created vugs and void secondary porosity in otherwise non-porous foraminiferal wackestone and packstone. Therefore, creating a matrix of depositional fabrics versus diagenetic processes enabled the identification of different situations in which porosity was either created or destroyed. Future Directions: By correlating the collected petrographic data with logs, it will become possible to identify certain “facio-diagenetic” signatures on logs which will be very useful in both exploration and production. Studying the micro and nano-porosity will provide a better understanding of the evolution and destruction of its porosity system.



2020 ◽  
Vol 90 (5) ◽  
pp. 480-493
Author(s):  
Omar N. Al-Mufti ◽  
R. William C. Arnott

ABSTRACT Soft-sediment deformation structures, like convolute lamination and pseudonodules, are common in deep-marine turbidites, but details of their origin and timing of formation remain a source of debate. Deep-marine basin-floor deposits of the Neoproterozoic Upper Kaza Group (Windermere Supergroup) crop out superbly in the Castle Creek study area and provide an ideal laboratory to investigate these aspects in convolute-laminated pseudonodules, and also how that deformation influenced later diagenesis. Pseudonodules consist of well-sorted, matrix-poor, upper medium- to coarse-grained, planar-stratified or cross-stratified sandstone that are underlain and overlain by comparatively more poorly sorted, matrix-rich, graded sandstone of similar grain size. Deposition of the stratified pseudonodules is interpreted to have occurred during the same event that deposited the graded sandstone, albeit during a period of general transport bypass, whereby isolated, shallow, seafloor depressions became filled with well-sorted, stratified sand. As stratified sand accumulated the depressions slowly subsided until a critical thickness had built up and exceeded the load-bearing capacity of the substrate composed of graded sand. This destabilized the surface separating the two layers and resulted in the stratified unit foundering, and in some cases becoming completely enveloped by, the upward-displaced lower-density substrate. Surprisingly, despite the deformed macroscopic character of the stratified sediment, primary grain fabric, including intergranular porosity up to 40%, was preserved and influenced early diagenesis, which, owing to dispersed phosphate cement and depleted carbon isotope composition of the pervasive carbonate cement, would have begun very near the sediment–water interface. Importantly also, pseudonodules are common in basin-floor deposits but comparatively rare in continental-slope strata. Expanding flow conditions over the basin floor would have promoted grain settling, and in turn development of a more stably (density) stratified flow structure. Ultimately this resulted in higher local rates of sedimentation on the basin floor and the accumulation of a substrate more prone to later liquidization.



2020 ◽  
Author(s):  
Juncheng Qiao ◽  
Jianhui Zeng ◽  
Xiao Feng

<p>Hydrocarbon exploration is extending from the shallowly buried to deeply buried strata with increasing demands for fossil fuels. The variable storage and percolation capacities that intrinsically depend on the pore geometry restrict the hydrocarbon recovery and displacement efficiency and trigger studies on the micro-scale pore structure, fluid flow capacity, and their controlling factors. Minerals within sandstone are the results of the coupling control of depositional factors and diagenetic alternations, which determine the microscopic pore geometry and subsequently affect the fluid flow capacity. In order to investigate the impacts of mineralogy on the pore structure and fluid flow capacity, integrated analyses including porosity and permeability measurements, casting thin section (CTS), scanning electron microscopy (SEM), pressure-controlled mercury porosimetry (PCP), rate-controlled mercury porosimetry (RCP), nuclear magnetic resonance (NMR), and X-ray diffraction (XRD) are conducted on the deeply buried sandstone samples in the Jurassic Sangonghe Formation of the Junggar Basin. Microscopic pore structure is characterized by the combination of SEM, CTS, PCP, and RCP and fractal theory. Fluid flow capacity is evaluated by the innovative application of film bound water model in NMR and mineralogy is quantitatively measured by XRD. The results indicate that the deeply buried sandstone is rich in quartz (54.2%), feldspar (25.1%), and clay (14.2%), with dominant kaolinite (5.04%) and chlorite (5.38%) cementation. The reservoir has a wide pore-throat diameter distribution with three peaks in the ranges 0.01–1, 10–80, and 200–1000 μm. Pores are tri-fractal and can be divided into micropores, mesopores, and macropores, with average porosity contributions of 50.11, 21.83, and 28.04%, respectively. The movable porosity of deeply buried sandstone ranges from 1.75 to 8.24%, primarily contributed by intergranular (avg. 2.34%) and intragranular pores (avg. 2.56%). Most of the fluids are movable in intergranular pores but are irreducible in intragranular pores. Correlation analyses between mineralogy and pore structure suggest that quartz provides preservation to intergranular porosity, which increases pore size and macropores porosity and reduces heterogeneity of the pore system. The influence of feldspar reverses and becomes poor owing to the simultaneous clay precipitation and complex roles of feldspar dissolution in microporosity. Chlorite, kaolinite, and illite, all act as destructions to intergranular porosity. They enhance the mesopores and micropores porosities, reduce the pore size, and increase the microscopic heterogeneities of the macropores, micropores, and whole pore system. The relationships between mineralogy and fluid flow capacity indicate that quartz is favorable for the fluid flow capacity, but feldspar and clay play negative roles. The reversed impacts of quartz and feldspar lay in their opposite controls on pore size. However, both pore size and hydrophilia should be taken into account when considering the effects of clay minerals. These negative effects are associated with types, contents, and hydrophilic degrees of clay minerals, in which I/S and illite exhibit the strongest negative impacts. The fluid flow in the intergranular and intragranular pores is generally enhanced by higher quartz content, but reduced by higher clay content. Irreducible fluids in the intergranular and intragranular pores are determined by chlorite and kaolinite contents, respectively.</p>



2020 ◽  
Author(s):  
Norov Baigalmaa ◽  
Takeyuki Ogata ◽  
Luvsanchultem Jargal ◽  
Bat-Orshih Erdenetsogt ◽  
Jamsran Erdenebayar

<p>The Nariin Sukhait mine is located in the southwest of Umnugobi province 50 kilometers from Mongolia's border with China at Shivee Khuren within the Nariin Sukhait deposit, which has relatively complex geological features. The most prominent feature relating to the Nariin Sukhait coal deposit is the arcuate, east-west trending Nariin Sukhait fault. The coal-bearing section, interpreted to be middle Jurassic in age, is exposed primarily in a window adjacent to this fault.</p><p>The chemical composition of whole indicates (variable composition, values of the ratio Th/U > 3.8-4.2, values Th/Sc 0.3-0.8, values LaN/YbN > 5 and values Eu/Eu* 0.6-0.9) indicates components derived from the active continental margin type. The low CIA values (50–60) indicate the absence or poor chemical weathering in the source area.</p><p>SEM-CL-imaging of sandstone quartz from Nariin sukhait show three types of quartz:  early Q1 cementation has gray to slightly grey luminescences, postdated compaction, and reduced intergranular porosity associated with illite formed during eogenesis. Q2 is characterized by dark luminescence overgrowths and is more voluminous in the thinly bedded sandstones than in the thickly bedded sandstones filling most of the remaining pore space during mesogenesis. Q3 was formed during the early telogenesis stage fully cementing the sandstones and the fractures were filled by hydrothermal chlorite and sulfides. Significant amounts of trace elements Al, Ti, Ca, K and Fe has been detected in quartz overgrowths. Al varies consistently between each cement with averages of 1324, 1523, and 1352 ppm for the Q1, Q2, and Q3 generations, respectively.</p><p>The geochemical, SEM-CL imaging and EPMA data results suggest a relatively igneous source, whit felsic composition. The sedimentary environment of the sandstone and argillite of these sedimentary rocks was the poor chemical weathering in the source area.</p>



2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Larissa Bezerra da Silva ◽  
Diego Blaese ◽  
Ana Paula da Silva Peres ◽  
Antonio Carlos Silva da Costa ◽  
Wilson Acchar

ABSTRACT Alumina-Glass compositions were prepared to evaluate the effect of glass as sintering aids. The composites showed densification below 1100°C. The highest density values (~95%) were obtained for compositions based respectively on borosilicate (G2 and G3) and soda lime glasses (G4), all [A1] [A2] containing Na in the precursor powder. Samples G1 (K-based) and G5 (no K or Na in the precursor glass powder) presented irregular morphology with the presence of intergranular porosity. The composition G2, G3, and G4 presented uniform morphology corresponding to higher densification.



2020 ◽  
Vol 146 ◽  
pp. 01004
Author(s):  
Ivan Deshenenkov ◽  
Camilo Polo

The characterization of the fluid-flow properties in biogenically altered formations is a key for successful exploration campaigns. This study assessed reservoir quality and evaluated permeability of the biogenically-modified Cretaceous carbonate section in Saudi Arabia. When dealing with these bioturbated carbonates, characterization of sedimentary heterogeneities is often overprinted by the complex spatial geometries of burrows. The high-resolution 3D X-ray microscopy imaging and analysis of these bioturbated sections lead to a better understanding of the interconnectivity between permeable burrows and tight matrix. The analysis deploys multiscale imaging from whole core to sub-micron scale. The coarse imaging at 20-50 microns resolution helped to identify bioturbated sections to select samples for higher resolution tomography. The 3D sample tomograms were segmented to define burrows and matrix distributions, where samples were extracted for thin-sections, scanning electronic microscopy (SEM) and mercury injection capillary pressure (MICP) analyses to refine the pore sizes and rock types. The analysis showed an intricate, highly connected, mixed horizontal and inclined burrow system dominated by Thalassinoides. Intergranular porosity, associated with the fill of Thalassinoides, constitutes a mechanism for permeability enhancement in a tight matrix. Increased permeability is associated with higher dolomite content that might be used as a sweet spot identifier from wireline logs.



Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3663
Author(s):  
Lindsey Rasmussen ◽  
Tianguang Fan ◽  
Alex Rinehart ◽  
Andrew Luhmann ◽  
William Ampomah ◽  
...  

The efficiency of carbon utilization and storage within the Pennsylvanian Morrow B sandstone, Farnsworth Unit, Texas, is dependent on three-phase oil, brine, and CO2 flow behavior, as well as spatial distributions of reservoir properties and wettability. We show that end member two-phase flow properties, with binary pairs of oil–brine and oil–CO2, are directly dependent on heterogeneity derived from diagenetic processes, and evolve progressively with exposure to CO2 and changing wettability. Morrow B sandstone lithofacies exhibit a range of diagenetic processes, which produce variations in pore types and structures, quantified at the core plug scale using X-ray micro computed tomography imaging and optical petrography. Permeability and porosity relationships in the reservoir permit the classification of sedimentologic and diagenetic heterogeneity into five distinct hydraulic flow units, with characteristic pore types including: macroporosity with little to no clay filling intergranular pores; microporous authigenic clay-dominated regions in which intergranular porosity is filled with clay; and carbonate–cement dominated regions with little intergranular porosity. Steady-state oil–brine and oil–CO2 co-injection experiments using reservoir-extracted oil and brine show that differences in relative permeability persist between flow unit core plugs with near-constant porosity, attributable to contrasts in and the spatial arrangement of diagenetic pore types. Core plugs “aged” by exposure to reservoir oil over time exhibit wettability closer to suspected in situ reservoir conditions, compared to “cleaned” core plugs. Together with contact angle measurements, these results suggest that reservoir wettability is transient and modified quickly by oil recovery and carbon storage operations. Reservoir simulation results for enhanced oil recovery, using a five-spot pattern and water-alternating-with-gas injection history at Farnsworth, compare models for cumulative oil and water production using both a single relative permeability determined from history matching, and flow unit-dependent relative permeability determined from experiments herein. Both match cumulative oil production of the field to a satisfactory degree but underestimate historical cumulative water production. Differences in modeled versus observed water production are interpreted in terms of evolving wettability, which we argue is due to the increasing presence of fast paths (flow pathways with connected higher permeability) as the reservoir becomes increasingly water-wet. The control of such fast-paths is thus critical for efficient carbon storage and sweep efficiency for CO2-enhanced oil recovery in heterogeneous reservoirs.



Sign in / Sign up

Export Citation Format

Share Document