Blockchain-Based Secure Outsourcing of Fully Homomorphic Encryption Using Hidden Ideal Lattice

Author(s):  
Mingyang Song ◽  
Yingpeng Sang ◽  
Yuying Zeng ◽  
Shunchao Luo
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Mingyang Song ◽  
Yingpeng Sang ◽  
Yuying Zeng ◽  
Shunchao Luo

The efficiency of fully homomorphic encryption has always affected its practicality. With the dawn of Internet of things, the demand for computation and encryption on resource-constrained devices is increasing. Complex cryptographic computing is a major burden for those devices, while outsourcing can provide great convenience for them. In this paper, we firstly propose a generic blockchain-based framework for secure computation outsourcing and then propose an algorithm for secure outsourcing of polynomial multiplication into the blockchain. Our algorithm for polynomial multiplication can reduce the local computation cost to O n . Previous work based on Fast Fourier Transform can only achieve O n log n for the local cost. Finally, we integrate the two secure outsourcing schemes for polynomial multiplication and modular exponentiation into the fully homomorphic encryption using hidden ideal lattice and get an outsourcing scheme of fully homomorphic encryption. Through security analysis, our schemes achieve the goals of privacy protection against passive attackers and cheating detection against active attackers. Experiments also demonstrate our schemes are more efficient in comparisons with the corresponding nonoutsourcing schemes.


2013 ◽  
Vol 8 (12) ◽  
pp. 2127-2137 ◽  
Author(s):  
Thomas Plantard ◽  
Willy Susilo ◽  
Zhenfei Zhang

2020 ◽  
Author(s):  
Megha Kolhekar ◽  
Ashish Pandey ◽  
Ayushi Raina ◽  
Rijin Thomas ◽  
Vaibhav Tiwari ◽  
...  

2021 ◽  
Author(s):  
Mostefa Kara ◽  
Abdelkader Laouid ◽  
Mohammed Amine Yagoub ◽  
Reinhardt Euler ◽  
Saci Medileh ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 345
Author(s):  
Pyung Kim ◽  
Younho Lee ◽  
Youn-Sik Hong ◽  
Taekyoung Kwon

To meet password selection criteria of a server, a user occasionally needs to provide multiple choices of password candidates to an on-line password meter, but such user-chosen candidates tend to be derived from the user’s previous passwords—the meter may have a high chance to acquire information about a user’s passwords employed for various purposes. A third party password metering service may worsen this threat. In this paper, we first explore a new on-line password meter concept that does not necessitate the exposure of user’s passwords for evaluating user-chosen password candidates in the server side. Our basic idea is straightforward; to adapt fully homomorphic encryption (FHE) schemes to build such a system but its performance achievement is greatly challenging. Optimization techniques are necessary for performance achievement in practice. We employ various performance enhancement techniques and implement the NIST (National Institute of Standards and Technology) metering method as seminal work in this field. Our experiment results demonstrate that the running time of the proposed meter is around 60 s in a conventional desktop server, expecting better performance in high-end hardware, with an FHE scheme in HElib library where parameters support at least 80-bit security. We believe the proposed method can be further explored and used for a password metering in case that password secrecy is very important—the user’s password candidates should not be exposed to the meter and also an internal mechanism of password metering should not be disclosed to users and any other third parties.


Sign in / Sign up

Export Citation Format

Share Document