Mountain Pastures of Qilian Shan Under Continuous Grazing: Main Environmental Gradients, Vegetation Composition and Soil Properties

2021 ◽  
pp. 555-574
Author(s):  
Alina Baranova ◽  
Udo Schickhoff
2012 ◽  
Vol 9 (4) ◽  
pp. 1277-1289 ◽  
Author(s):  
X. A. Zuo ◽  
J. M. H. Knops ◽  
X. Y. Zhao ◽  
H. L. Zhao ◽  
T. H. Zhang ◽  
...  

Abstract. Although patterns between plant diversity and ecosystem productivity have been much studied, a consistent relationship has not yet emerged. Differing patterns between plant diversity and productivity have been observed in response to spatial variability of environmental factors and vegetation composition. In this study, we measured vegetation cover, plant diversity, productivity, soil properties and site characteristics along an environmental gradient (mobile dune, semi-fixed dune, fixed dune, dry meadow, wet meadow and flood plain grasslands) of natural sandy grasslands in semiarid areas of northern China. We used multivariate analysis to examine the relationships between environmental factors, vegetation composition, plant diversity and productivity. We found a positive correlation between plant diversity and productivity. Vegetation composition aggregated by the ordination technique of non-metric multidimensional scaling had also a significantly positive correlation with plant diversity and productivity. Environmental gradients in relation to soil and topography affected the distribution patterns of vegetation composition, species diversity and productivity. However, environmental gradients were a better determinant of vegetation composition and productivity than of plant diversity. Structural equation modeling suggested that environmental factors determine vegetation composition, which in turn independently drives both plant diversity and productivity. Thus, the positive correlation between plant diversity and productivity is indirectly driven by vegetation composition, which is determined by environmental gradients in soil and topography.


2011 ◽  
Vol 8 (6) ◽  
pp. 11795-11825
Author(s):  
X. A. Zuo ◽  
J. M. H. Knops ◽  
X. Y. Zhao ◽  
H. L. Zhao ◽  
Y. Q. Li ◽  
...  

Abstract. Although patterns between plant diversity and ecosystem productivity have been much studied, a consistent relationship has not yet emerged. Several different patterns have been observed both naturally and experimentally, likely caused by spatial variability of environmental factors and vegetation composition. In this study, we measured the vegetation cover, plant diversity, productivity, soil properties and site characteristics along an environment gradient of natural sandy grasslands (mobile dune, semi-fixed dune, fixed dune, dry meadow, wet meadow and flood plain grassland) in a semiarid area of Northern China. We used multivariate analysis to examine the relationships between environment factors, vegetation composition, plant diversity and productivity. We found a positive correlation between plant diversity and productivity. Vegetation composition had also a significantly positive correlation with plant diversity and productivity. Environment gradients in relation to soil properties and topography features affected the distribution patterns of species diversity, vegetation composition and productivity. However, environment gradients are a better determiner for vegetation composition and productivity than for species diversity. The analysis from optimization model of structural equation suggests that environmental factors determine vegetation composition, which in turn drives independently both plant diversity and productivity. Thus the positive correlation between plant diversity and productivity is not direct, but indirectly driven by the spatial pattern of vegetation composition determined by environment gradients in soil and topography.


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197363 ◽  
Author(s):  
Grzegorz Swacha ◽  
Zoltán Botta-Dukát ◽  
Zygmunt Kącki ◽  
Daniel Pruchniewicz ◽  
Ludwik Żołnierz

2012 ◽  
Vol 366 (1-2) ◽  
pp. 401-413 ◽  
Author(s):  
Maarten J. J. Schrama ◽  
Verena Cordlandwehr ◽  
Eric J. W. Visser ◽  
Theo M. Elzenga ◽  
Yzaak de Vries ◽  
...  

Plant Ecology ◽  
2010 ◽  
Vol 211 (2) ◽  
pp. 279-296 ◽  
Author(s):  
Scott T. Burley ◽  
Karen A. Harper ◽  
Jeremy T. Lundholm

2010 ◽  
Vol 18 (NA) ◽  
pp. 279-289 ◽  
Author(s):  
Benoit Lafleur ◽  
David Paré ◽  
Alison D. Munson ◽  
Yves Bergeron

Plant species distribution and plant community composition vary along environmental gradients. At the continental scale, climate plays a major role in determining plant distribution, while at the local and regional scales vegetation patterns are more strongly related to edaphic and topographic factors. The projected global warming and alteration of the precipitation regime will influence tree physiology and phenology, and is likely to promote northward migration of tree species. However the influence of soil characteristics on tree species migration is not as well understood. Considering the broad tolerance of most tree species to variations in soil factors, soils should not represent a major constraint for the northward shift of tree species. However, locally or regionally, soil properties may constrain species migration. Thus, while climate change has the potential to induce a northward migration of tree species, local or regional soil properties may hinder their migratory response. These antagonistic forces are likely to slow down potential tree migration in response to climate change. Because tree species respond individualistically to climate variables and soil properties, new tree communities are likely to emerge from climate change.


2018 ◽  
Vol 98 (4) ◽  
pp. 678-687
Author(s):  
J.J. Miller ◽  
T. Curtis ◽  
W.D. Willms ◽  
D.S. Chanasyk

A 5 yr (2011–2015) field study was conducted to test the hypothesis that streambank fencing had a significant effect on selected vegetation and soil properties of the Mixed prairie component of a complex corridor pasture. The grazing treatments [ungrazed (UG) – periodic grazing (PG)] inside the corridor pasture were 11 yr (2001–2012) of cattle exclusion (UG), followed by 3 yr (2013–2015) of periodic grazing (PG) when the riparian soil was dry. A control treatment outside the fencing was continuous grazing (CG). Selected vegetation and soil properties were measured over the growing season at 10 paired locations in each treatment (nonreplicated) pasture over 5 yr (2011–2015), and rangeland health was measured in 2011. The UG–PG treatment significantly (P ≤ 0.10) increased the total biomass by 2- to 5-fold in all 5 yr compared with CG treatment and improved the rangeland health score of the UG phase of the UG–PG (63%) treatment compared with the CG treatment (50%) in 2011. It also significantly reduced surface soil temperature by 2.2–5.2 °C, significantly increased volumetric water content of the surface soil by 7%–10% in 3 of 5 yr, and significantly increased surface soil CO2 efflux (instantaneous) by 17%–60% in all 5 yr. Overall, the UG–PG treatment improved rangeland health, increased total biomass, soil water, and soil CO2 efflux of the Mixed prairie, but decreased soil temperature compared with the CG treatment. Excessive dead biomass, greater fire risk, and an increase in noxious weeds caused by cattle exclusion suggested that periodic grazing may be the preferred option.


Sign in / Sign up

Export Citation Format

Share Document