Andic Soil Properties Controlled by Environmental Gradients and Site Disturbance

CSA News ◽  
2019 ◽  
Vol 64 (2) ◽  
pp. 11-11
2014 ◽  
Vol 60 (No. 1) ◽  
pp. 28-34 ◽  
Author(s):  
A. Solgi ◽  
A. Najafi

Soil properties can be affected by heavy equipment used for skidding but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based skidding on site disturbance and soil physical properties. We also tested the effects of skid trail slope and traffic frequency on soil compaction, total porosity, and moisture content. On average, about 30% of all harvested area was disturbed to varying levels. Intact forest floor (undisturbed) and light slash were the dominant surface conditions, covering an average of 68.9% of harvested area. Deep disturbed soils accounted for only just over 1.1% of observations. Results showed that dry bulk density, total porosity and moisture content were affected considerably on skid trails by traffic frequency and skid trail slope. Measurements of soil properties in the surface layer (0–10 cm) showed that bulk density is 57% higher and total porosity is 31% lower on the skid trail compared to the undisturbed area. Average moisture content has been measured as 35% on the skid trail versus 47% in the undisturbed area.  


2010 ◽  
Vol 18 (NA) ◽  
pp. 279-289 ◽  
Author(s):  
Benoit Lafleur ◽  
David Paré ◽  
Alison D. Munson ◽  
Yves Bergeron

Plant species distribution and plant community composition vary along environmental gradients. At the continental scale, climate plays a major role in determining plant distribution, while at the local and regional scales vegetation patterns are more strongly related to edaphic and topographic factors. The projected global warming and alteration of the precipitation regime will influence tree physiology and phenology, and is likely to promote northward migration of tree species. However the influence of soil characteristics on tree species migration is not as well understood. Considering the broad tolerance of most tree species to variations in soil factors, soils should not represent a major constraint for the northward shift of tree species. However, locally or regionally, soil properties may constrain species migration. Thus, while climate change has the potential to induce a northward migration of tree species, local or regional soil properties may hinder their migratory response. These antagonistic forces are likely to slow down potential tree migration in response to climate change. Because tree species respond individualistically to climate variables and soil properties, new tree communities are likely to emerge from climate change.


2020 ◽  
Vol 456 (1-2) ◽  
pp. 129-143
Author(s):  
Fang Lan Li ◽  
M. Luke McCormack ◽  
Xin Liu ◽  
Hui Hu ◽  
De Feng Feng ◽  
...  

1970 ◽  
Vol 48 (3) ◽  
pp. 555-566 ◽  
Author(s):  
D. F. Grigal ◽  
H. F. Arneman

A number of classifications of 40 upland forest stands from northeastern Minnesota were carried out and the results were compared. Numerical classifications based on various vegetation properties, on soil properties, and on synthesized environmental gradients of heat, moisture, and nutrients, and non-numerical classifications based on cover type and soil were examined.The vegetation classification based on frequency of all vascular species, excluding those occurring in only one stand, was most closely related to the other vegetation classifications, to the soil classifications, and to the environmental classification. Classifications based on overstory vegetation were poorly related to both those based on soil and on environment. In the study area, overstory composition is relatively insensitive to soils and environment. The numerical classification based on all 22 soil properties which were measured was more closely related to the vegetation classifications than was the non-numerical soil classification based on a few "diagnostic" properties. To find relationships between various classifications of natural systems, it is necessary to use both relevant properties and a correct scale of classification.


2021 ◽  
Vol 9 ◽  
Author(s):  
Amanda Ratier Backes ◽  
Larissa Frey ◽  
José Ramón Arévalo ◽  
Sylvia Haider

Elevational variation of vegetation has been of interest for centuries, and a prominent example for such pronounced vegetation changes can be found along the steep elevational gradient on Tenerife, Canary Islands, 200 km off the West-African cost. The 3,718-m ascent to the peak of the island volcano, Teide, offers a unique opportunity to investigate associated changes in vegetation. However, elevation is not a directly acting factor, but represents several natural environmental gradients. While the elevational variation of temperature is globally rather uniform and temperature effects on plant communities are well understood, much less is known about the region-specific elevational change of chemical soil properties and their impact on plant communities along elevational gradients. Because human interference takes place even at high-elevation areas, we considered human-induced disturbance as important third factor acting upon plant community assemblages. In our study, we compared the effects of soil properties, temperature and disturbance on species richness, functional identity and functional diversity of plant communities along the elevational gradient on Tenerife. We used pairs of study plots: directly adjacent to a road and in natural vegetation close by. In each plot, we did vegetation relevées, took soil samples, and installed temperature loggers. Additionally, we collected leaf samples to measure leaf functional traits of 80% of the recorded species. With increasing elevation, soil cation concentrations, cation exchange capacity (CEC) and pH decreased significantly, while the soil carbon to phosphorus ratio slightly peaked at mid-elevations. Temperature had the strongest effects, increasing species richness and favoring communities with fast resource acquisition. Species richness was higher at road verges, indicating the positive effect of reduced competition and artificially generated heterogeneity. However, we did not detect road effects on plant functional characteristics. Vice versa, we did not find soil effects on species richness, but increased concentrations of soil cations favored acquisitive communities. Surprisingly, we could not reveal any influence on community functional diversity. The importance of temperature aligns with findings from large-scale biogeographic studies. However, our results also emphasize that it is necessary to consider the effects of local abiotic drivers, like soil properties and disturbance, to understand variation in plant communities.


2020 ◽  
Vol 638 ◽  
pp. 149-164
Author(s):  
GM Svendsen ◽  
M Ocampo Reinaldo ◽  
MA Romero ◽  
G Williams ◽  
A Magurran ◽  
...  

With the unprecedented rate of biodiversity change in the world today, understanding how diversity gradients are maintained at mesoscales is a key challenge. Drawing on information provided by 3 comprehensive fishery surveys (conducted in different years but in the same season and with the same sampling design), we used boosted regression tree (BRT) models in order to relate spatial patterns of α-diversity in a demersal fish assemblage to environmental variables in the San Matias Gulf (Patagonia, Argentina). We found that, over a 4 yr period, persistent diversity gradients of species richness and probability of an interspecific encounter (PIE) were shaped by 3 main environmental gradients: bottom depth, connectivity with the open ocean, and proximity to a thermal front. The 2 main patterns we observed were: a monotonic increase in PIE with proximity to fronts, which had a stronger effect at greater depths; and an increase in PIE when closer to the open ocean (a ‘bay effect’ pattern). The originality of this work resides on the identification of high-resolution gradients in local, demersal assemblages driven by static and dynamic environmental gradients in a mesoscale seascape. The maintenance of environmental gradients, specifically those associated with shared resources and connectivity with an open system, may be key to understanding community stability.


Sign in / Sign up

Export Citation Format

Share Document