Modeling and Control of the Temperature Field of Oil Well Equipped with a Heating Cable

Author(s):  
N. Kostarev ◽  
N. Trufanova
1999 ◽  
Vol 121 (3) ◽  
pp. 440-447 ◽  
Author(s):  
N. Fourligkas ◽  
C. Doumanidis

A general thermal modeling and control methodology for thermal processing of layered materials for rapid prototyping technologies is established in this article. An analytical multivariable model of lumped temperature outputs generated by heat inputs on a surface grid is developed, based on Green’s function and state-space descriptions. The few independent parameters needed in such a linearized formulation are experimentally identified, and their time-variability reflects the heat transfer nonlinearities and process disturbances. A robust controller with thermal feedback is designed by pole placement methods, to obtain a specified dynamic temperature field yielding the desired material structure and properties. The regulated thermal processing is optimized in real time by proper heat source power modulation and torch guidance through a simulated annealing strategy. Its performance is tested on both the computer model and a laboratory station, using robotically guided plasma-arc cutting and infrared thermal sensing, in regulating the sensitized zone during blanking of an elementary contour pattern on stainless steel.


2016 ◽  
Author(s):  
F. A. Al Sairafi ◽  
K. E. Al Ajmi ◽  
A. S. Yigit ◽  
A. P. Christoforou

2009 ◽  
Vol 129 (4) ◽  
pp. 363-367
Author(s):  
Tomoyuki Maeda ◽  
Makishi Nakayama ◽  
Hiroshi Narazaki ◽  
Akira Kitamura

Sign in / Sign up

Export Citation Format

Share Document