Pilot modeling and control augmentation for the XV-15 in in-ground-effect hover

1984 ◽  
Author(s):  
R. EDMUNDS ◽  
J. VANGAASBEEK
2020 ◽  
Vol 17 (4) ◽  
pp. 172988142095302
Author(s):  
Tianfu Ai ◽  
Bin Xu ◽  
Changle Xiang ◽  
Wei Fan ◽  
Yibo Zhang

Modeling and control for a novel coaxial ducted fan aerial robot in-ground-effect is presented in this article. Based on experiments using the ducted fan bench test, the fitting curve of the ground effect thrust of the ducted fan aerial robot at different heights is obtained. In addition, the flow field simulation results of the prototype with ground effect at different heights can be obtained using computational fluid dynamics software. A simplified model of the prototype for control can be designed based on several reasonable hypotheses that are established using blade element and momentum theory. To compensate for the disturbance associated with ground effect, a nonlinear disturbance observer is designed to estimate the disturbance, and control structure of the closed-loop system is composed of a nonlinear disturbance observer combined with a double-loop proportion–integration–differentiation controller. The results of several numerical simulations and experiments demonstrate the effectiveness of this controller structure. The performances of tracking trajectory and system stability are improved significantly, compared to the situation that the ground effect is not compensated for.


2009 ◽  
Vol 129 (4) ◽  
pp. 363-367
Author(s):  
Tomoyuki Maeda ◽  
Makishi Nakayama ◽  
Hiroshi Narazaki ◽  
Akira Kitamura

Author(s):  
Mohammed Jawad Mohammed ◽  
Majida Khalil Ahmed ◽  
Basma Abdullah Abbas

2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


Sign in / Sign up

Export Citation Format

Share Document