scholarly journals CSI (Cement Science Investigation): Using Machine Learning to Guess the OPC Pastes Composition from the Elastic Response

Author(s):  
Tulio Honorio ◽  
Sofiane Ait-Hamadouche ◽  
Amélie Fau
2020 ◽  
Author(s):  
Romain Gaillac ◽  
Siwar Chibani ◽  
François-Xavier Coudert

<div> <div> <div> <p>The characterization of the mechanical properties of crystalline materials is nowadays considered a routine computational task in DFT calculations. However, its high computational cost still prevents it from being used in high-throughput screening methodologies, where a cheaper estimate of the elastic properties of a material is required. In this work, we have investigated the accuracy of force field calculations for the prediction of mechanical properties, and in particular for the characterization of the directional Poisson’s ratio. We analyze the behavior of about 600,000 hypothetical zeolitic structures at the classical level (a scale three orders of magnitude larger than previous studies), to highlight generic trends between mechanical properties and energetic stability. By comparing these results with DFT calculations on 991 zeolitic frameworks, we highlight the limitations of force field predictions, in particular for predicting auxeticity. We then used this reference DFT data as a training set for a machine learning algorithm, showing that it offers a way to build fast and reliable predictive models for anisotropic properties. The accuracies obtained are, in particular, much better than the current “cheap” approach for screening, which is the use of force fields. These results are a significant improvement over the previous work, due to the more difficult nature of the properties studied, namely the anisotropic elastic response. It is also the first time such a large training data set is used for zeolitic materials. </p></div></div></div><div><div><div> </div> </div> </div>


2020 ◽  
Author(s):  
Romain Gaillac ◽  
Siwar Chibani ◽  
François-Xavier Coudert

<div> <div> <div> <p>The characterization of the mechanical properties of crystalline materials is nowadays considered a routine computational task in DFT calculations. However, its high computational cost still prevents it from being used in high-throughput screening methodologies, where a cheaper estimate of the elastic properties of a material is required. In this work, we have investigated the accuracy of force field calculations for the prediction of mechanical properties, and in particular for the characterization of the directional Poisson’s ratio. We analyze the behavior of about 600,000 hypothetical zeolitic structures at the classical level (a scale three orders of magnitude larger than previous studies), to highlight generic trends between mechanical properties and energetic stability. By comparing these results with DFT calculations on 991 zeolitic frameworks, we highlight the limitations of force field predictions, in particular for predicting auxeticity. We then used this reference DFT data as a training set for a machine learning algorithm, showing that it offers a way to build fast and reliable predictive models for anisotropic properties. The accuracies obtained are, in particular, much better than the current “cheap” approach for screening, which is the use of force fields. These results are a significant improvement over the previous work, due to the more difficult nature of the properties studied, namely the anisotropic elastic response. It is also the first time such a large training data set is used for zeolitic materials. </p></div></div></div><div><div><div> </div> </div> </div>


2017 ◽  
Author(s):  
Jack D. Evans ◽  
François-xavier Coudert

We show here that machine learning is a powerful new tool for predicting the elastic response of zeolites. We built our machine learning approach relying on geometric features only, which are related to local geometry, structure and porosity of a zeolite, to predict bulk and shear moduli of zeolites with an accuracy exceeding that of force field approaches. The development of this model has illustrated clear correlations between characteristic features of a zeolite and elastic moduli providing exceptional insight into the mechanics of zeolitic frameworks. Finally, we employ this methodology to predict the elastic response of 590 448 hypothetical zeolites, and the results of this massive database provide clear evidence to stability trends in porous materials.


2017 ◽  
Author(s):  
Jack D. Evans ◽  
François-xavier Coudert

We show here that machine learning is a powerful new tool for predicting the elastic response of zeolites. We built our machine learning approach relying on geometric features only, which are related to local geometry, structure and porosity of a zeolite, to predict bulk and shear moduli of zeolites with an accuracy exceeding that of force field approaches. The development of this model has illustrated clear correlations between characteristic features of a zeolite and elastic moduli providing exceptional insight into the mechanics of zeolitic frameworks. Finally, we employ this methodology to predict the elastic response of 590 448 hypothetical zeolites, and the results of this massive database provide clear evidence to stability trends in porous materials.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Sign in / Sign up

Export Citation Format

Share Document