Evolution of the Arabian Nubian Shield and Snowball Earth

Author(s):  
Nathan R. Miller ◽  
Robert J. Stern
2003 ◽  
Vol 121 (3-4) ◽  
pp. 263-283 ◽  
Author(s):  
Nathan R. Miller ◽  
Mulugeta Alene ◽  
Rosalino Sacchi ◽  
Robert J. Stern ◽  
Anna Conti ◽  
...  

2021 ◽  
Author(s):  
Melina Macouin ◽  
Sonia Rousse ◽  
Paul Antonio

<p>The Neoproterozoic is marked by unusual perturbations of the climate system (global glaciations), biogeochemical cycles (e.g. oxygenation, Carbon), and life diversity that will lead to a world as we know it today. These upheavals can be considered from the point of view of paleogeographic reconstructions to decipher the forcing mechanisms and consequences. The paleopositions of the continents and their geology impact the continental weathering, a fundamental element in the feedbacks driving the climate. Besides, the position of the supercontinent Rodinia and the nature of its margins influence degassing, itself a major factor in biogeochemical cycles. Neoproterozoic paleogeographic reconstructions are based on some reliable paleomagnetic data and geological evidence of kinship between the cratons. Uncertainties in Neoproterozoic paleogeographies hinder our understanding of the relationship between deep Earth and superficials layers. Notably, the positions of the cratons that will constitute the Arabian-Nubian shield are poorly constrained. The paleomagnetic results we obtained in Oman on well-dated mafic dykes, indicate a mid-latitude position at the dawn of the Sturtian glaciation. These results show the potential of these small cratons, which represent a zone of arcs and arc collisions, in our understanding of the geodynamics of the Rodinia supercontinent. We then propose a refined configuration at ca. 720 Ma, highlighting the extent of snowball Earth deposits.</p>


2021 ◽  
pp. 1-18
Author(s):  
Shehata Ali ◽  
Abdullah S. Alshammari

Abstract The Arabian Shield of Saudi Arabia represents part of the Arabian–Nubian Shield and forms an exposure of juvenile continental crust on the eastern side of the Red Sea rift. Gabbroic intrusions in Saudi Arabia constitute a significant part of the mafic magmatism in the Neoproterozoic Arabian Shield. This study records the first detailed geological, mineralogical and geochemical data for gabbroic intrusions located in the Gabal Samra and Gabal Abd areas of the Hail region in the Arabian Shield of Saudi Arabia. Geological field relations and investigations, supported by mineralogical and geochemical data, indicate that the gabbroic intrusions are generally unmetamorphosed and undeformed, and argue for their post-collisional emplacement. Their mineralogical and geochemical features reveal crystallization from hydrous, mainly tholeiitic, mafic magmas with arc-like signatures, which were probably inherited from the previous subduction event in the Arabian–Nubian Shield. The gabbroic rocks exhibit sub-chondritic Nb/U, Nb/Ta and Zr/Hf ratios, revealing depletion of their mantle source. Moreover, the high ratios of (Gd/Yb)N and (Dy/Yb)N indicate that their parental mafic melts were derived from a garnet-peridotite source with a garnet signature in the mantle residue. This implication suggests that the melting region was at a depth exceeding ∼70–80 km at the garnet stability field. They have geochemical characteristics similar to other post-collisional gabbros of the Arabian–Nubian Shield. Their origin could be explained by adiabatic decompression melting of depleted asthenosphere that interacted during ascent with metasomatized lithospheric mantle in an extensional regime, likely related to the activity of the Najd Fault System, at the end of the Pan-African Orogeny.


2013 ◽  
Vol 239 ◽  
pp. 56-78 ◽  
Author(s):  
Ghaleb H. Jarrar ◽  
Thomas Theye ◽  
Najel Yaseen ◽  
Martin Whitehouse ◽  
Victoria Pease ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document