red sea rift
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Jörg Follmann ◽  
Froukje M. van der Zwan ◽  
Jonas Preine ◽  
Christian Hübscher ◽  
Romain Bousquet ◽  
...  

Plutonic rocks such as gabbros provide information on magmatic and tectonic processes which occur beneath a mid-ocean rift axis as well as on the formation of the oceanic crust. Igneous rocks, reported from the Red Sea Rift valley, have been limited to extrusive basalts so far. The only deeper crustal rocks found in the Red Sea area are from the rift flanks and are interpreted as late-stage continental rift magmatism. Here, we present the geochemistry of the first recovered gabbro fragments from the axis of the Red Sea Rift, sampled from a crater structure within the brine-filled Discovery Deep at the axis of the Red Sea Rift. Petrology and geochemistry show characteristics of a typical mid-ocean ridge gabbro formed at shallow crystallization depth. Clinopyroxene core mineral data fall within two groups, thus pointing to a multiphased magmatic history, including different magma batches and a joint late-stage fractional crystallization. Geobarometry, based on clinopyroxene cores, suggests lower crystallization pressures than similar geobarometric data reported for gabbroic samples from Zabargad (8–9 kbar) and Brother’s Islands (2.5–3.5 kbar) at the rift flanks. However, based on the evolved whole rock composition, its multiphase history, the thickness of the crust, the current location of the samples, and the uncertainties in the barometer, geobarometric estimates for the samples are likely overestimated. Instead, we propose that these rock fragments originate from the upper part of a fully developed oceanic crust in the central Red Sea Rift. High-resolution bathymetry and sparker seismic data reveal that the Discovery Deep is characterized by a significant normal fault and a strong reflector near the rift axis, which we interpret as a potential sill intrusion in an approximate depth of 400 m. Based on the lack of progressive alteration and the sampling location within a sediment-free crater structure, we interpret that the emplacement of the gabbros has to be geologically recent. We interpret the gabbro either as a xenolith transported by the eruptive volcanism that formed the crater, potentially related to the sill intrusion visible at depth, or as intrusive gabbro, which was uplifted and deposited in a talus fan by the adjacent normal fault, exposed by the formation of the volcanic crater.


2021 ◽  
pp. 103824
Author(s):  
Samuel C. Boone ◽  
Maria-Laura Balestrieri ◽  
Barry Kohn
Keyword(s):  
Red Sea ◽  

Author(s):  
Nicolás Castro-Perdomo ◽  
Renier Viltres ◽  
Frédéric Masson ◽  
Yann Klinger ◽  
Shaozhuo Liu ◽  
...  

Summary Although the Dead Sea Transform fault system has been extensively studied in the past, little has been known about the present-day kinematics of its southernmost portion that is offshore in the Gulf of Aqaba. Here we present a new GPS velocity field based on three surveys conducted between 2015 and 2019 at 30 campaign sites, complemented by 11 permanent stations operating near the gulf coast. Interseismic models of strain accumulation indicate a slip rate of $4.9^{+0.9}_{-0.6}~mm/yr$ and a locking depth of $6.8^{+3.5}_{-3.1}~km$ in the gulf’s northern region. Our results further indicate an apparent reduction of the locking depth from the inland portion of the Dead Sea Transform towards its southern junction with the Red Sea rift. Our modelling results reveal a small systematic left-lateral residual motion that we postulate is caused by, at least in part, late postseismic transient motion from the 1995 MW7.2 Nuweiba earthquake. Estimates of the moment accumulation rate on the main faults in the gulf, other than the one that ruptured in 1995, suggest that they might be near the end of their current interseismic period, implying elevated seismic hazard in the gulf area.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alessio Sanfilippo ◽  
Camilla Sani ◽  
Najeeb M. A. Rasul ◽  
Ian C. F. Stewart ◽  
Luigi Vigliotti ◽  
...  

Volcanism in the western part of the Arabian plate resulted in one of the largest alkali basalt provinces in the world, where lava fields with sub-alkaline to alkaline affinity are scattered from Syria and the Dead Sea Transform Zone through western Saudi Arabia to Yemen. After the Afar plume emplacement (∼30 Ma), volcanism took place in Yemen and progressively propagated northward due to Red Sea rifting-related lithospheric thinning (initiated ∼27–25 Ma). Few lava fields were emplaced during the Mesozoic, with the oldest 200 Ma volcanic activity recorded in northern Israel. We report results from volcanic pipes in the Marthoum area, east of Harrat Uwayrid, where over a hundred pipes occupy a stratigraphic level in the early Ordovician Saq sandstones. Most of them are circular or elliptical features marked by craters aligned along NW-SE fractures in the sandstone resulting from phreatomagmatic explosions that occurred when rising magma columns came in contact with the water table in the porous sandstone host. These lavas have Sr-Pb-Nd-Hf isotopic compositions far from the Cenozoic Arabian alkaline volcanism field, being considerably more enriched in Nd-Hf and Pb isotopes than any other Arabian Plate lava ever reported. New K-Ar dating constrains their age from Late Cretaceous to Early Eocene, thus anticipating the Afar plume emplacement and the Red Sea rift. Basalt geochemistry indicates that these volcanic eruptions formed from low-degree partial melting of an enriched lithospheric mantle source triggered by local variations in the asthenosphere-lithosphere boundary. This mantle source has a composition similar to the HIMU-like enriched isotopic component reported in the East African Rift and considered to represent the lowermost lithospheric mantle of the Nubian Shield. The generated melt, mixed in different proportions with melt derived from a depleted asthenosphere, produces the HIMU-like character throughout the Cenozoic Arabian alkaline volcanism. Although apparently hidden, this enriched lithospheric component is therefore ubiquitous and widespread in the cratonic roots of the African and Arabian subcontinental mantle.


2021 ◽  
Vol 9 ◽  
Author(s):  
Samuel C. Boone ◽  
Maria-Laura Balestrieri ◽  
Barry Kohn

The Oligocene-Recent Red Sea rift is one of the preeminent examples of lithospheric rupture in the recent geological past, forming the basis for many models of how continental breakup occurs and progresses to the formation of new oceanic crust. Utilisation of low-temperature thermochronology in the Red Sea Rift since the 1980s has been key to constraining its spatio-temporal evolution, providing constraints for the propagation of strain and geomorphological development of its margins where datable syn-tectonic strata and/or markers are absent. We review the wealth of published apatite fission track and (U-Th-Sm)/He data from along the Red Sea, affording insights into the Oligocene-Recent thermo-tectonic evolution of the Nubian and Arabian margins. A regional interpolation protocol was employed to synthesise time-temperature reconstructions generated from the mined thermochronology data and burial histories produced from vitrinite reflectance and well data. These cooling-heating maps record a series of pronounced episodes of upper crustal thermal flux related to the development of the Oligocene-Recent Red Sea Rift. Assimilation of these regional thermal history maps with paleogeographic reconstructions and regional magmatic and strain histories provide regional perspectives on the roles of tectonism and geodynamic activity in Red Sea formation and their effects on rift margin development.


2021 ◽  
pp. 105253
Author(s):  
Saada Ahmed Saada ◽  
Kevin Mickus ◽  
Ahmed Mohammed Eldosouky ◽  
Amin Ibrahim

2021 ◽  
Vol 9 ◽  
Author(s):  
Barbara J. Tewksbury ◽  
Elhamy A. Tarabees ◽  
Robert M. Welch ◽  
Charlotte J. Mehrtens

Indirect indicators are critically important for recognizing hypogene karst that is too deep-seated to have explorable hypogene caves. We have suggested in previous publications that an extensive network of non-tectonic synclines in otherwise flat-lying Eocene limestone in Egypt might be such an indirect indicator. We proposed that synclines formed by sag of limestone layers overlying a zone of hypogene karst that today remains deep below the surface and suggested that hypogene speleogenesis resulted from ascending aggressive fluids associated with crustal extension and magmatism in Egypt during Red Sea Rift initiation. Without hypogene caves to explore, however, we were unable to provide compelling evidence for hypogene karst processes. By doubling our mapping area from 4,000 to 8,000 km2, a clear picture has emerged of patterns in the syncline network that provide compelling evidence for hypogene speleogenesis. Over this larger area, the network displays two distinct patterns: 1) synclines and ridges that outline polygons 700–2,000 m across, and 2) narrow N–S zones of synclines spaced 5–10 km apart, with WNW–ESE to NW–SE trending shallow synclines and ridges traversing the panels between N–S zones. The geometries suggest that the syncline network is controlled by two structural patterns in rocks underlying the limestones: 1) polygonal faults in underlying shales and 2) reactivated N–S, left-lateral basement faults that are largely blind at the current level of erosion. These structures served as conduits that conveyed fluids upward into the overlying Eocene limestones, triggering dissolution at depth and a pattern of sag above that was inherited from the nature and pattern of faults and fractures in rocks underlying the limestones. The unique patterns and characteristics of this network of synclines are applicable elsewhere as an indirect indicator of deep-seated hypogene karst. Our new data also strongly suggest that syncline formation spanned the time of crustal extension in Egypt associated with onset of Red Sea rifting ∼23–22 Ma. Endogenic CO2 associated with mantle-derived basaltic magmas was likely a significant component of fluids, perhaps involving highly aggressive supercritical CO2. Mantle-derived C and He in modern Egyptian oasis water suggest that hypogene speleogenesis may still be locally active.


2021 ◽  
pp. 1-18
Author(s):  
Shehata Ali ◽  
Abdullah S. Alshammari

Abstract The Arabian Shield of Saudi Arabia represents part of the Arabian–Nubian Shield and forms an exposure of juvenile continental crust on the eastern side of the Red Sea rift. Gabbroic intrusions in Saudi Arabia constitute a significant part of the mafic magmatism in the Neoproterozoic Arabian Shield. This study records the first detailed geological, mineralogical and geochemical data for gabbroic intrusions located in the Gabal Samra and Gabal Abd areas of the Hail region in the Arabian Shield of Saudi Arabia. Geological field relations and investigations, supported by mineralogical and geochemical data, indicate that the gabbroic intrusions are generally unmetamorphosed and undeformed, and argue for their post-collisional emplacement. Their mineralogical and geochemical features reveal crystallization from hydrous, mainly tholeiitic, mafic magmas with arc-like signatures, which were probably inherited from the previous subduction event in the Arabian–Nubian Shield. The gabbroic rocks exhibit sub-chondritic Nb/U, Nb/Ta and Zr/Hf ratios, revealing depletion of their mantle source. Moreover, the high ratios of (Gd/Yb)N and (Dy/Yb)N indicate that their parental mafic melts were derived from a garnet-peridotite source with a garnet signature in the mantle residue. This implication suggests that the melting region was at a depth exceeding ∼70–80 km at the garnet stability field. They have geochemical characteristics similar to other post-collisional gabbros of the Arabian–Nubian Shield. Their origin could be explained by adiabatic decompression melting of depleted asthenosphere that interacted during ascent with metasomatized lithospheric mantle in an extensional regime, likely related to the activity of the Najd Fault System, at the end of the Pan-African Orogeny.


2021 ◽  
Author(s):  
Mohamed Sobh ◽  
Khaled Zahran ◽  
Nils Holzrichter ◽  
Christian Gerhards

<p><span>Widespread Cenozoic volcanisms in the Arabian shield including “Harrats” have been referring to lithospheric thinning and/or mantle plume activity as a result of Red Sea rift-related extension.</span></p><p><span>A fundamental key in understanding the deriving mechanism of these volcanic activities and its relationship to 2007-2009 seismic swarms required a reliable model of the present-day lithospheric thermo-chemical structure.</span></p><p><span>In this work, we modeled crustal and lithospheric thickness variation as well as the variations in thermal, composition, seismic velocity, and density of the lithosphere beneath the Arabian shield within a thermodynamically self - consistent framework.</span></p><p><span>The resulting thermal and density structures show large variations, revealing strong asymmetry between the Arabian shield and Arabian platform within the Arabian Plate.</span></p><p><span>We model negative density anomalies associated with the hot mantle beneath Harrats, which coincides with the modelled lithosphere thinned (~ 65 km) as a result of the second stage of lithospheric thinning following the initial Red Sea extension.</span></p>


Sign in / Sign up

Export Citation Format

Share Document