Sustainable Soil Management to Mitigate Soil Erosion Hazards in Egypt

Author(s):  
Mohamed M. Wassif ◽  
Omnia M. Wassif
Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1438
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Spatial distribution of soil organic carbon (SOC) is the result of a combination of various factors related to both the natural environment and anthropogenic activities. The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility to compaction. The study area was the vineyard region of Niš, which represents a medium-sized vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil erosion. However, according to the mean annual soil loss rate, the total area is classified as having tolerable erosion risk. Land use was shown to be an important factor that controls SOC content. The vineyards contained less SOC than forest land. The SOC content was affected by topographic position. The interactive effect of topographic position and land use on SOC was significant. The SOC of forest land was significantly higher at the upper position than at the middle and lower positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but occurred as a consequence of different soil management practices. The deep tillage at 60–80 cm, along with application of organic amendments, showed the potential to preserve SOC in the subsoil and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum soil compaction in the surface layer of the soil, while low permeability was observed in deeper layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides. Knowledge of soil carbon distribution as a function of topographic position, land use and soil management is important for sustainable production and climate change mitigation.


2021 ◽  
Vol 129 ◽  
pp. 126334
Author(s):  
M.C. Kik ◽  
G.D.H. Claassen ◽  
M.P.M. Meuwissen ◽  
A.B. Smit ◽  
H.W. Saatkamp

2021 ◽  
Vol 13 (4) ◽  
pp. 1991
Author(s):  
Silvia Stanchi ◽  
Odoardo Zecca ◽  
Csilla Hudek ◽  
Emanuele Pintaldi ◽  
Davide Viglietti ◽  
...  

We studied the effects of three soil management approaches (permanent grassing, chemical weeding, and buffer strips), and the additional impact of tractor passage on soil erosion in a sloping vineyard located in the inner part of Aosta Valley (N-W Italian Alps). The vineyard rows were equipped with a sediment collection system with channels and barrel tanks. A total of 12 events with sediment production were observed across 6 years, and the collected sediments were weighted and analyzed. Average erosion rates ranged from negligible (mainly in grassed rows) to 1.1 t ha−1 per event (after weeding). The most erosive event occurred in July 2015, with a total rainfall of 32.2 mm, of which 20.1 were recorded in 1 h. Despite the limited number of erosive events observed, and the low measured erosion rates, permanent grassing reduced soil erosion considerably with respect to weeding; buffering had a comparable effect to grassing. The tractor passage, independent of the soil management approaches adopted, visibly accelerated the erosion process. The collected sediments were highly enriched in organic C, total N, and fine size fractions, indicating a potential loss of fertility over time. Despite the measured erosion rates being low over the experiment’s duration, more severe events are well documented in the recent past, and the number of intense storms is likely to increase due to climate change. Thus, the potential effects of erosion in the medium and long term need to be limited to a minimum rate of soil loss. Our experiment helped to compare soil losses by erosion under different soil management practices, including permanent grassing, i.e., a nature-based erosion mitigation measure. The results of the research can provide useful indications for planners and practitioners in similar regions, for sustainable, cross-sectoral soil management, and the enhancement of soil ecosystem services.


2017 ◽  
Vol 66 ◽  
pp. 241-249 ◽  
Author(s):  
Nadine Turpin ◽  
Hein ten Berge ◽  
Carlo Grignani ◽  
Gema Guzmán ◽  
Karl Vanderlinden ◽  
...  

2017 ◽  
Vol 9 (11) ◽  
pp. 2150 ◽  
Author(s):  
Emanuele Pintaldi ◽  
Csilla Hudek ◽  
Silvia Stanchi ◽  
Thomas Spiegelberger ◽  
Enrico Rivella ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 4432 ◽  
Author(s):  
Katharina Helming ◽  
Katrin Daedlow ◽  
Bernd Hansjürgens ◽  
Thomas Koellner

The globally increasing demand for food, fiber, and bio-based products interferes with the ability of arable soils to perform their multiple functions and support sustainable development. Sustainable soil management under high production conditions means that soil functions contribute to ecosystem services and biodiversity, natural and economic resources are utilized efficiently, farming remains profitable, and production conditions adhere to ethical and health standards. Research in support of sustainable soil management requires an interdisciplinary approach to three interconnected challenges: (i) understanding the impacts of soil management on soil processes and soil functions; (ii) assessing the sustainability impacts of soil management, taking into account the heterogeneity of geophysical and socioeconomic conditions; and (iii) having a systemic understanding of the driving forces and constraints of farmers’ decision-making on soil management and how governance instruments may, interacting with other driving forces, steer sustainable soil management. The intention of this special issue is to take stock of an emerging interdisciplinary research field addressing the three challenges of sustainable soil management in various geographic settings. In this editorial, we summarize the contributions to the special issue and place them in the context of the state of the art. We conclude with an outline of future research needs.


2019 ◽  
Vol 8 (4) ◽  
pp. 43
Author(s):  
Olatomide W. Olowa Omowumi A. Olowa ◽  
Akinkunmi A. Falade Ijiyokun, A.O.

Proper soil management is germane to sustainable vegetable production. The greatest threat to sustainable agricultural productivity is the declining soil productivity. The reason for this declining soil productivity might not be unconnected with the soil management practices by farmers. This study attempts to isolate factors that are contributing to vegetable farmers’ adoption of soil management practices. Primary data were collected from purposively selected 120 fluted pumpkin vegetable farmers, adopting pre-tested semi-structured interview schedule in Ikorodu Local Government Area. This is predicated on the facts that Ikorodu environment seems to be well adapted for fluted pumpkin production as many hectares of land are cultivated to fluted pumpkin by hundreds of small holders. Probit regression model was used to isolate factors affecting the adoption of sustainable soil management practices. Overall, the model predicted 85.76% of the sample correctly. The findings of the study revealed that number of economically active family members, farmers’ education, livestock holding, membership in farmer's group and credit availability were significantly positive while age of farmer negatively affect adoption of sustainable soil management practice. A unit increased in economically active family members, years of education and livestock standard unit would increase the probability of adoption of technology by 21.3, 5.8 and 7.6% respectively. Likewise, if farmers were made member in the groups and credit made available, the probability of adoption of technology would increase by 46.2 and 46.3% respectively. But a unit increase in the age of household head would decrease the level of adoption by 1.4% indicating old aged farmers do not adopt innovative technologies in agriculture.Keywords: Lagos, adoption, probit, sustainable soil management, vegetable, fluted pumpkin


Sign in / Sign up

Export Citation Format

Share Document