Robust Adaptive Disturbance Attenuation

2021 ◽  
pp. 135-188
Author(s):  
Saeid Jafari ◽  
Petros Ioannou
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Weiwei Sun ◽  
Guochen Pang ◽  
Pan Wang ◽  
Lianghong Peng

This paper deals with the robust stabilizability andL2disturbance attenuation for a class of time-delay Hamiltonian control systems with uncertainties and external disturbances. Firstly, the robust stability of the given systems is studied, and delay-dependent criteria are established based on the dissipative structural properties of the Hamiltonian systems and the Lyapunov-Krasovskii (L-K) functional approach. Secondly, the problem ofL2disturbance attenuation is considered for the Hamiltonian systems subject to external disturbances. An adaptive control law is designed corresponding to the time-varying delay pattern involved in the systems. It is shown that the closed-loop systems under the feedback control law can guarantee theγ-dissipative inequalities be satisfied. Finally, two numerical examples are provided to illustrate the theoretical developments.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hossein Tohidi ◽  
Koksal Erenturk

This paper deals with the problem of induction motor tracking control against actuator faults and external disturbances using the linear matrix inequalities (LMIs) method and the adaptive method. A direct adaptive fault-tolerant tracking controller design method is developed based on Lyapunov stability theory and a constructive algorithm based on linear matrix inequalities for online tuning of adaptive and state feedback gains to stabilize the closed-loop system in order to reduce the fault effect with disturbance attenuation. Simulation results reveal the merits of proposed robust adaptive fault-tolerant tracking control scheme on an induction motor subjected to actuator faults.


Sign in / Sign up

Export Citation Format

Share Document