Joint Interface Contact Area Predictions Using Surface Strain Measurements

2021 ◽  
pp. 193-195
Author(s):  
Aryan Singh ◽  
Keegan J. Moore
2001 ◽  
Vol 14 (02) ◽  
pp. 78-83 ◽  
Author(s):  
T.C. Hearn ◽  
T.D. Woodside ◽  
J.R. Field

SummaryThe applied level of screw torque has a significant impact on both the mechanical and vascular environment in bone following the application of a bone plate. The amount of torque applied dictates the resultant level of axial tension generated in the screw and the compressive forces between the plate and underlying bone. The interface contact area between the plate and underlying bone is also affected. As a consequence, screw torque can be implicated in the pathogenesis of implant induced osteopenia and other pathological occurrences that follow bone plate fixation.The work performed was designed to evaluate the effect of the applied level of screw torque. The construction stiffness (rigidity) and bone surface strain was quantitated in response to variable levels of screw torque. This was performed utilizing intact and osteotomized cadaveric bone.The current level of screw torque applied in the clinical situation, for 4.5 mm cortical screws, is approximately 5 Newton metres (Nm). It appears from the work presented herein, that lowering the level of applied screw torque does not adversely affect the rigidity of the final construction. This fact may serve to ameliorate the pathological consequences of applying screws and plates using current clinical criteria.The amount of torque applied to screws in the application of bone plates has a profound effect on a number of elements, namely the interface contact area and force. The work presented examines the effect of screw torque on the rigidity and bone strain distribution of fractured bone following bone plate reconstruction. It appears that the use of lower levels of screw torque, than currently used in clinical practice, does not adversely effect the rigidity of the final construction. These findings support the notion that the level of screw torque applied may have a role in ameliorating the pathogenic response that occur following bone plate application, namely osteopaenia.


Strain ◽  
2003 ◽  
Vol 39 (4) ◽  
pp. 177-185 ◽  
Author(s):  
G. Urriolagoitia-Sosa ◽  
J. F. Durodola ◽  
N. A. Fellows

2020 ◽  
Vol 54 (2) ◽  
pp. 531-564
Author(s):  
Erik Burman ◽  
Miguel A. Fernández ◽  
Stefan Frei

We derive a Nitsche-based formulation for fluid-structure interaction (FSI) problems with contact. The approach is based on the work of Chouly and Hild (SIAM J. Numer. Anal. 51 (2013) 1295–1307) for contact problems in solid mechanics. We present two numerical approaches, both of them formulating the FSI interface and the contact conditions simultaneously in equation form on a joint interface-contact surface Γ(t). The first approach uses a relaxation of the contact conditions to allow for a small mesh-dependent gap between solid and wall. The second alternative introduces an artificial fluid below the contact surface. The resulting systems of equations can be included in a consistent fashion within a monolithic variational formulation, which prevents the so-called “chattering” phenomenon. To deal with the topology changes in the fluid domain at the time of impact, we use a fully Eulerian approach for the FSI problem. We compare the effect of slip and no-slip interface conditions and study the performance of the method by means of numerical examples.


2016 ◽  
Vol 13 (115) ◽  
pp. 20150874 ◽  
Author(s):  
Benoit Delhaye ◽  
Allan Barrea ◽  
Benoni B. Edin ◽  
Philippe Lefèvre ◽  
Jean-Louis Thonnard

The temporal evolution of surface strain, resulting from a combination of normal and tangential loading forces on the fingerpad, was calculated from high-resolution images. A customized robotic device loaded the fingertip with varying normal force, tangential direction and tangential speed. We observed strain waves that propagated from the periphery to the centre of the contact area. Consequently, different regions of the contact area were subject to varying degrees of compression, stretch and shear. The spatial distribution of both the strains and the strain energy densities depended on the stimulus direction. Additionally, the strains varied with the normal force level and were substantial, e.g. peak strains of 50% with a normal force of 5 N, i.e. at force levels well within the range of common dexterous manipulation tasks. While these observations were consistent with some theoretical predictions from contact mechanics, we also observed substantial deviations as expected given the complex geometry and mechanics of fingertips. Specifically, from in-depth analyses, we conclude that some of these deviations depend on local fingerprint patterns. Our data provide useful information for models of tactile afferent responses and background for the design of novel haptic interfaces.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3150
Author(s):  
Renxiu Han ◽  
Guoxi Li ◽  
Jingzhong Gong ◽  
Meng Zhang ◽  
Kai Zhang

An accurate equivalent method of metal joint interface is of great significance to optimize the dynamic performance of the whole machine. Therefore, it is necessary to establish an accurate equivalent method of joint interface. The virtual material method is a precise equivalent method of joint interface. The traditional virtual material method is based on the M–B fractal contact theory. By modeling the contact mechanics of the joint interface, the physical properties of the virtual material are obtained separately, such as elastic modulus, Poisson’s ratio and density. In this paper, Persson contact theory is used to establish the interface contact mechanics model to find the physical properties of virtual materials. The virtual material methods constructed by two theories are respectively applied to the modal simulation to obtain the natural frequencies of the joint interface. By comparing the natural frequencies obtained by modal experiment and modal simulation, it is found that the natural frequencies obtained by the virtual material method based on Persson contact theory are closer to the results obtained by the modal experiment, and the error is within 5%. The error of the natural frequencies obtained by the virtual material method based on the M–B fractal contact theory is within 10%. Therefore, the Persson contact theory can establish a more accurate equivalent method of metal’s joint interface.


Sign in / Sign up

Export Citation Format

Share Document