Playability of a 1734 Guarneri Cello: Info-Gap Robustness Analysis of Uncertainty

Author(s):  
R. Viala ◽  
S. Le Conte ◽  
S. Vaiedelich ◽  
S. Cogan ◽  
Y. Ben-Haim
Keyword(s):  
Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 271
Author(s):  
Chentao Yong ◽  
Andras Gyorgy

While the vision of synthetic biology is to create complex genetic systems in a rational fashion, system-level behaviors are often perplexing due to the context-dependent dynamics of modules. One major source of context-dependence emerges due to the limited availability of shared resources, coupling the behavior of disconnected components. Motivated by the ubiquitous role of toggle switches in genetic circuits ranging from controlling cell fate differentiation to optimizing cellular performance, here we reveal how their fundamental dynamic properties are affected by competition for scarce resources. Combining a mechanistic model with nullcline-based stability analysis and potential landscape-based robustness analysis, we uncover not only the detrimental impacts of resource competition, but also how the unbalancedness of the switch further exacerbates them. While in general both of these factors undermine the performance of the switch (by pushing the dynamics toward monostability and increased sensitivity to noise), we also demonstrate that some of the unwanted effects can be alleviated by strategically optimized resource competition. Our results provide explicit guidelines for the context-aware rational design of toggle switches to mitigate our reliance on lengthy and expensive trial-and-error processes, and can be seamlessly integrated into the computer-aided synthesis of complex genetic systems.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 324
Author(s):  
Haobin Jiang ◽  
Xijia Chen ◽  
Yifu Liu ◽  
Qian Zhao ◽  
Huanhuan Li ◽  
...  

Accurately estimating the online state-of-charge (SOC) of the battery is one of the crucial issues of the battery management system. In this paper, the gas–liquid dynamics (GLD) battery model with direct temperature input is selected to model Li(NiMnCo)O2 battery. The extended Kalman Filter (EKF) algorithm is elaborated to couple the offline model and online model to achieve the goal of quickly eliminating initial errors in the online SOC estimation. An implementation of the hybrid pulse power characterization test is performed to identify the offline parameters and determine the open-circuit voltage vs. SOC curve. Apart from the standard cycles including Constant Current cycle, Federal Urban Driving Schedule cycle, Urban Dynamometer Driving Schedule cycle and Dynamic Stress Test cycle, a combined cycle is constructed for experimental validation. Furthermore, the study of the effect of sampling time on estimation accuracy and the robustness analysis of the initial value are carried out. The results demonstrate that the proposed method realizes the accurate estimation of SOC with a maximum mean absolute error at 0.50% in five working conditions and shows strong robustness against the sparse sampling and input error.


JAMIA Open ◽  
2021 ◽  
Author(s):  
Bo Peng ◽  
Rowland W Pettit ◽  
Christopher I Amos

Abstract Objectives We developed COVID-19 Outbreak Simulator (https://ictr.github.io/covid19-outbreak-simulator/) to quantitatively estimate the effectiveness of preventative and interventive measures to prevent and battle COVID-19 outbreaks for specific populations. Materials and methods Our simulator simulates the entire course of infection and transmission of the virus among individuals in heterogeneous populations, subject to operations and influences, such as quarantine, testing, social distancing, and community infection. It provides command-line and Jupyter notebook interfaces and a plugin system for user-defined operations. Results The simulator provides quantitative estimates for COVID-19 outbreaks in a variety of scenarios and assists the development of public health policies, risk-reduction operations, and emergency response plans. Discussion Our simulator is powerful, flexible, and customizable, although successful applications require realistic estimation and robustness analysis of population-specific parameters. Conclusion Risk assessment and continuity planning for COVID-19 outbreaks are crucial for the continued operation of many organizations. Our simulator will be continuously expanded to meet this need.


Sign in / Sign up

Export Citation Format

Share Document