Progressive Collapse Analysis of a Multistoried Building with Flat Slab

2021 ◽  
pp. 235-248
Author(s):  
G. Anandakrishnan ◽  
Jiji Antony
2021 ◽  
Vol 894 ◽  
pp. 115-120
Author(s):  
Suyash Garg ◽  
Vinay Agrawal ◽  
Ravindra Nagar

With no beams, reinforced concrete flat slab buildings are typically built to advance urban growth and to meet the architectural needs of large spans and low storey heights. Its behaviour to avoid a progressive collapse must therefore be investigated. In this research, the progressive collapse resistance of six-storey RC flat slab buildings with varying span lengths and floor heights is assessed by subjecting the building to three different instances of instantaneous removal of columns in the first storey, performing dynamic progressive collapse analysis as per GSA guidelines, and comparing the evaluated joint displacements and chord rotations at column removal locations with the permissible chord rotation for flat slab buildings as per DoD guidelines. The results have shown that the studied flat slab building with all different span lengths and floor heights is prone to progressive collapse. It is also observed that the vertical displacements and chord rotations at column removal positions increase as the span lengths and storey heights are increased alternately.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 2166-2176
Author(s):  
Hao Zhou ◽  
Youbao Jiang ◽  
Sondipon Adhikari ◽  
Qianqian Yin ◽  
Jianguo Cai

1992 ◽  
Vol 114 (1) ◽  
pp. 1-8
Author(s):  
T. C. Thuestad ◽  
F. G. Nielsen

The Oseberg jacket was installed at the Oseberg field in the North Sea during the summer of 1987 and the production started on December 1, 1988. On March 6, 1988, a submarine accidentally impacted with the Oseberg jacket. This paper presents results from the evaluation of the importance of the damage to the overall structural safety. A nonlinear progressive collapse analysis is applied for the safety check. The theoretical computations are verified through evaluation of strain and acceleration time series recorded during the submarine impact. The reduction in the overall structural capacity of the jacket was in the order of 10 percent. However, the local member capacity was significantly reduced and it was necessary to remove the damaged member in order to obtain the initial level of safety.


2016 ◽  
Vol 123 ◽  
pp. 31-40 ◽  
Author(s):  
Behrouz Asgarian ◽  
Soheil Dadras Eslamlou ◽  
Arash E. Zaghi ◽  
Masoud Mehr

Author(s):  
José Manuel Gordo ◽  
C. Guedes Soares

The results of a four points bending test on a box girder are presented. The experiment is part of series of tests with similar configuration but with different thickness and span between frames. The present work refers to the slenderest plate box girder with a plate's thickness of 2 mm but with a short span between frames. The experiment includes initial loading cycles allowing for partial relief of residual stresses. The moment curvature relationship is established for a large range of curvature. The ultimate bending moment (UM) of the box is evaluated and compared with the first yield moment and the plastic moment allowing the evaluation of the efficiency of the structure. The postbuckling behavior and collapse mode are characterized. Comparison of the experiment with a progressive collapse analysis method is made taking into consideration the effect of residual stresses on envelop of the moment curvature curve of the structure.


Sign in / Sign up

Export Citation Format

Share Document