scholarly journals The Role of Lateral Inhibition on Visual Number Sense

Author(s):  
Yiwei Zhou ◽  
Huanwen Chen
2021 ◽  
Author(s):  
Yiwei Zhou ◽  
Huanwen Chen ◽  
Yijun Wang

Lateral inhibition is a basic principle of information processing and widely exists in the human and animal nervous systems. Lateral inhibition is also involved in processing visual information because it travels through the retina, primary visual cortex, and visual nervous system. This finding suggests that lateral inhibition is associated with visual number sense in humans and animals. Here, we show a number-sensing neural network model based on lateral inhibition. The model can reproduce the size and distance effects of the output response of human and animal number-sensing neurons when the network connection weights are set randomly without adjustment. The number sense of the model disappears when lateral inhibition is removed. Our study shows that the first effect of lateral inhibition is to strengthen the linear correlation between the total response intensity of the input layer and the number of objects. The second one is to allow the output cells to prefer different numbers. Results indicate that lateral inhibition plays an indispensable role in untrained spontaneous number sense.


2017 ◽  
Vol 40 ◽  
Author(s):  
Ivilin Peev Stoianov ◽  
Marco Zorzi

AbstractWe provide an emergentist perspective on the computational mechanism underlying numerosity perception, its development, and the role of inhibition, based on our deep neural network model. We argue that the influence of continuous visual properties does not challenge the notion of number sense, but reveals limit conditions for the computation that yields invariance in numerosity perception. Alternative accounts should be formalized in a computational model.


2015 ◽  
Vol 223 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Evelyn H. Kroesbergen ◽  
Marloes van Dijk

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.


2018 ◽  
Vol 71 (1) ◽  
pp. 28-36 ◽  
Author(s):  
Matthias Hartmann ◽  
Jochen Laubrock ◽  
Martin H Fischer

In the domain of language research, the simultaneous presentation of a visual scene and its auditory description (i.e., the visual world paradigm) has been used to reveal the timing of mental mechanisms. Here we apply this rationale to the domain of numerical cognition in order to explore the differences between fast and slow arithmetic performance, and to further study the role of spatial-numerical associations during mental arithmetic. We presented 30 healthy adults simultaneously with visual displays containing four numbers and with auditory addition and subtraction problems. Analysis of eye movements revealed that participants look spontaneously at the numbers they currently process (operands, solution). Faster performance was characterized by shorter latencies prior to fixating the relevant numbers and fewer revisits to the first operand while computing the solution. These signatures of superior task performance were more pronounced for addition and visual numbers arranged in ascending order, and for subtraction and numbers arranged in descending order (compared to the opposite pairings). Our results show that the “visual number world”-paradigm provides on-line access to the mind during mental arithmetic, is able to capture variability in arithmetic performance, and is sensitive to visual layout manipulations that are otherwise not reflected in response time measurements.


2019 ◽  
Vol 55 (1) ◽  
pp. 100-111
Author(s):  
Somasundram Piriya ◽  
◽  
Norul Sharifah ◽  
Kwan Leong ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document