scholarly journals Role of Lateral Inhibition on Visual Number Sense

2021 ◽  
Author(s):  
Yiwei Zhou ◽  
Huanwen Chen ◽  
Yijun Wang

Lateral inhibition is a basic principle of information processing and widely exists in the human and animal nervous systems. Lateral inhibition is also involved in processing visual information because it travels through the retina, primary visual cortex, and visual nervous system. This finding suggests that lateral inhibition is associated with visual number sense in humans and animals. Here, we show a number-sensing neural network model based on lateral inhibition. The model can reproduce the size and distance effects of the output response of human and animal number-sensing neurons when the network connection weights are set randomly without adjustment. The number sense of the model disappears when lateral inhibition is removed. Our study shows that the first effect of lateral inhibition is to strengthen the linear correlation between the total response intensity of the input layer and the number of objects. The second one is to allow the output cells to prefer different numbers. Results indicate that lateral inhibition plays an indispensable role in untrained spontaneous number sense.

2000 ◽  
Vol 17 (1) ◽  
pp. 77-89 ◽  
Author(s):  
ROSARIO M. BALBOA ◽  
NORBERTO M. GRZYWACZ

Lateral inhibition is one of the first and most important stages of visual processing. There are at least four theories related to information theory in the literature for the role of early retinal lateral inhibition. They are based on the spatial redundancy in natural images and the advantage of removing this redundancy from the visual code. Here, we contrast these theories with data from the retina's outer plexiform layer. The horizontal cells' lateral-inhibition extent displays a bell-shape behavior as function of background luminance, whereas all the theories show a fall as luminance increases. It is remarkable that different theories predict the same luminance behavior, explaining “half” of the biological data. We argue that the main reason is how these theories deal with photon-absorption noise. At dim light levels, for which this noise is relatively large, large receptive fields would increase the signal-to-noise ratio through averaging. Unfortunately, such an increase at low luminance levels may smooth out basic visual information of natural images. To explain the biological behavior, we describe an alternate hypothesis, which proposes that the role of early visual lateral inhibition is to deal with noise without missing relevant clues from the visual world, most prominently, the occlusion boundaries between objects.


2017 ◽  
Vol 40 ◽  
Author(s):  
Ivilin Peev Stoianov ◽  
Marco Zorzi

AbstractWe provide an emergentist perspective on the computational mechanism underlying numerosity perception, its development, and the role of inhibition, based on our deep neural network model. We argue that the influence of continuous visual properties does not challenge the notion of number sense, but reveals limit conditions for the computation that yields invariance in numerosity perception. Alternative accounts should be formalized in a computational model.


2015 ◽  
Vol 223 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Evelyn H. Kroesbergen ◽  
Marloes van Dijk

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.


Author(s):  
Vincenzo Butticè ◽  
Silvio Vismara

AbstractNowadays equity crowdfunding plays an important role in the entrepreneurial finance markets. To better understand the functioning of the industry, it is important to consider the entire equity crowdfunding process and all the actors involved. Equity crowdfunding platforms match indeed the demand of capital from entrepreneurial ventures with the supply of capital by investors. This manuscript is a first step in this direction, by (1) comparing equity crowdfunding with traditional sources of entrepreneurial finance; (2) discussing the potential and the perils of equity crowdfunding for inclusivity and democratization; (3) highlighting the role of visual information in digital finance; and (4) providing first insights on the industrial dynamics in equity crowdfunding. The paper gives researchers and practitioners orientation about recent developments in equity crowdfunding literature and provides relevant research directions.


Author(s):  
Lorenzo Cangiano ◽  
Sabrina Asteriti

AbstractIn the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.


Sign in / Sign up

Export Citation Format

Share Document