Insights into Gas Hydrate Dynamics from 3D Seismic Data, Offshore Mauritania

Author(s):  
Christian Berndt ◽  
Richard Davies ◽  
Ang Li ◽  
Jinxiu Yang
Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. B183-B191 ◽  
Author(s):  
M. Riedel ◽  
G. Bellefleur ◽  
S. R. Dallimore ◽  
A. Taylor ◽  
J. F. Wright

Amplitude and frequency anomalies associated with lakes and drainage systems were observed in a 3D seismic data set acquired in the Mallik area, Mackenzie Delta, Northwest Territories, Canada. The site is characterized by large gas hydrate deposits inferred from well-log analyses and coring. Regional interpretation of the gas hydrate occurrences is mainly based on seismic amplitude anomalies, such as brightening or blanking of seismic energy. Thus, the scope of this research is to understand the nature of the amplitude behavior in the seismic data. We have therefore analyzed the 3D seismic data to define areas with amplitude reduction due to contamination from lakes and channels and to distinguish them from areas where amplitude blanking may be a geologic signal. We have used the spectral ratio method to define attenuation (Q) over different areas in the 3D volume and subsequently applied Q-compensation to attenuate lateral variations ofdispersive absorption. Underneath larger lakes, seismic amplitude is reduced and the frequency content is reduced to [Formula: see text], which is half the original bandwidth. Traces with source-receiver pairs located inside of lakes show an attenuation factor Q of [Formula: see text], approximately half of that obtained for source-receiver pairs situated on deep, continuous permafrost outside of lakes. Deeper reflections occasionally identified underneath lakes show low-velocity-related pull-down. The vertical extent of the washout zones is enhanced by acquisition with limited offsets and from processing parameters such as harsh mute functions to reduce noise from surface waves. The strong attenuation and seismic pull-down may indicate the presence of unfrozen water in deeper lakes and unfrozen pore water within the sediments underlying the lakes. Thus, the blanking underneath lakes is not necessarily related to gas migration or other in situ changes in physical properties potentially associated with the presence of gas hydrate.


2016 ◽  
Vol 4 (1) ◽  
pp. SA25-SA37 ◽  
Author(s):  
Xiujuan Wang ◽  
Jin Qian ◽  
Timothy S. Collett ◽  
Hesheng Shi ◽  
Shengxiong Yang ◽  
...  

A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.


2020 ◽  
Author(s):  
David Cox ◽  
Andrew M. W. Newton ◽  
Paul C. Knutz ◽  
Mads Huuse

<p>A drilling hazard assessment has been completed for a large area of the NW Greenland-Baffin Bay continental shelf. This assessment was in relation to International Ocean Discovery Program (IODP) proposal 909 that aims to drill several sites across the shelf in an attempt to better understand the evolution and variability of the northern Greenland Ice Sheet. The assessment utilised high quality and extensive 3D seismic data that were acquired during recent hydrocarbon exploration interest in the area – a fact that highlights the risk of drilling in a petroleum province and therefore, the importance of this assessment with regards to safety.</p><p>Scattered seismic anomalies are observed within the Cenozoic sedimentary succession covering the rift basins of the Melville Bay region. These features, potentially representing the presence of free gas or gas-rich fluids, vary in nature from isolated anomalies, fault flags, stacked fluid flow features and canyons; all of which pose a significant drilling risk and were actively avoided during site selection. In areas above the Melville Bay Ridge – a feature that dominates the structure of this area – free gas is also observed trapped beneath extensive gas hydrate deposits, identified via a spectacularly imaged bottom simulating reflector marking the base of the gas hydrate stability zone. The location of the hydrate deposits, and the free gas beneath, are likely controlled by a complicated migration history, due to large scale rift-related faulting and migration along sandy aquifer horizons. In other areas, gas is interpreted to have reached the shallow subsurface due to secondary leakage from a deeper gas reservoir on the ridge crest.</p><p>It is clear that hydrocarbon related hazards within this area are varied and abundant, making it a more challenging location to select sites for an IODP drilling campaign. However, due to the extensive coverage and high resolution (up to 11 m vertical resolution (45 Hz at 2.0 km/s velocity) of the 3D seismic data available, as well as the use of recently acquired ultra-high resolution site survey lines, these features can be accurately imaged and confidently mapped. This allowed for the development of a detailed understanding of the character and distribution of fluids within the shallow subsurface, and the use of this knowledge to select site localities that maximise the potential for drilling to be completed safely and successfully if proposal 909 were to be executed.</p>


2016 ◽  
Vol 4 (1) ◽  
pp. SA39-SA54 ◽  
Author(s):  
Sunny Singhroha ◽  
Stefan Bünz ◽  
Andreia Plaza-Faverola ◽  
Shyam Chand

We have estimated the seismic attenuation in gas hydrate and free-gas-bearing sediments from high-resolution P-cable 3D seismic data from the Vestnesa Ridge on the Arctic continental margin of Svalbard. P-cable data have a broad bandwidth (20–300 Hz), which is extremely advantageous in estimating seismic attenuation in a medium. The seismic quality factor (Q), the inverse of seismic attenuation, is estimated from the seismic data set using the centroid frequency shift and spectral ratio (SR) methods. The centroid frequency shift method establishes a relationship between the change in the centroid frequency of an amplitude spectrum and the Q value of a medium. The SR method estimates the Q value of a medium by studying the differential decay of different frequencies. The broad bandwidth and short offset characteristics of the P-cable data set are useful to continuously map the Q for different layers throughout the 3D seismic volume. The centroid frequency shift method is found to be relatively more stable than the SR method. Q values estimated using these two methods are in concordance with each other. The Q data document attenuation anomalies in the layers in the gas hydrate stability zone above the bottom-simulating reflection (BSR) and in the free gas zone below. Changes in the attenuation anomalies correlate with small-scale fault systems in the Vestnesa Ridge suggesting a strong structural control on the distribution of free gas and gas hydrates in the region. We argued that high and spatially limited Q anomalies in the layer above the BSR indicate the presence of gas hydrates in marine sediments in this setting. Hence, our workflow to analyze Q using high-resolution P-cable 3D seismic data with a large bandwidth could be a potential technique to detect and directly map the distribution of gas hydrates in marine sediments.


2018 ◽  
Vol 29 (2) ◽  
pp. 105-115 ◽  
Author(s):  
Sourav Kumar Sahoo ◽  
Wu-Cheng Chi ◽  
Wei-Chung Han ◽  
Liwen Chen ◽  
Char-Shine Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document