Classification of Computed Tomography Images with Pleural Effusion Disease Using Convolutional Neural Networks

2021 ◽  
pp. 559-565
Author(s):  
David Benavente ◽  
Gustavo Gatica ◽  
Ivan Derpich
Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 893
Author(s):  
Yazan Qiblawey ◽  
Anas Tahir ◽  
Muhammad E. H. Chowdhury ◽  
Amith Khandakar ◽  
Serkan Kiranyaz ◽  
...  

Detecting COVID-19 at an early stage is essential to reduce the mortality risk of the patients. In this study, a cascaded system is proposed to segment the lung, detect, localize, and quantify COVID-19 infections from computed tomography images. An extensive set of experiments were performed using Encoder–Decoder Convolutional Neural Networks (ED-CNNs), UNet, and Feature Pyramid Network (FPN), with different backbone (encoder) structures using the variants of DenseNet and ResNet. The conducted experiments for lung region segmentation showed a Dice Similarity Coefficient (DSC) of 97.19% and Intersection over Union (IoU) of 95.10% using U-Net model with the DenseNet 161 encoder. Furthermore, the proposed system achieved an elegant performance for COVID-19 infection segmentation with a DSC of 94.13% and IoU of 91.85% using the FPN with DenseNet201 encoder. The proposed system can reliably localize infections of various shapes and sizes, especially small infection regions, which are rarely considered in recent studies. Moreover, the proposed system achieved high COVID-19 detection performance with 99.64% sensitivity and 98.72% specificity. Finally, the system was able to discriminate between different severity levels of COVID-19 infection over a dataset of 1110 subjects with sensitivity values of 98.3%, 71.2%, 77.8%, and 100% for mild, moderate, severe, and critical, respectively.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tuan D. Pham

Abstract The use of imaging data has been reported to be useful for rapid diagnosis of COVID-19. Although computed tomography (CT) scans show a variety of signs caused by the viral infection, given a large amount of images, these visual features are difficult and can take a long time to be recognized by radiologists. Artificial intelligence methods for automated classification of COVID-19 on CT scans have been found to be very promising. However, current investigation of pretrained convolutional neural networks (CNNs) for COVID-19 diagnosis using CT data is limited. This study presents an investigation on 16 pretrained CNNs for classification of COVID-19 using a large public database of CT scans collected from COVID-19 patients and non-COVID-19 subjects. The results show that, using only 6 epochs for training, the CNNs achieved very high performance on the classification task. Among the 16 CNNs, DenseNet-201, which is the deepest net, is the best in terms of accuracy, balance between sensitivity and specificity, $$F_1$$ F 1 score, and area under curve. Furthermore, the implementation of transfer learning with the direct input of whole image slices and without the use of data augmentation provided better classification rates than the use of data augmentation. Such a finding alleviates the task of data augmentation and manual extraction of regions of interest on CT images, which are adopted by current implementation of deep-learning models for COVID-19 classification.


2019 ◽  
Vol 39 ◽  
pp. 363-370 ◽  
Author(s):  
Qianqian Zhang ◽  
Haifeng Wang ◽  
Sang Won Yoon ◽  
Daehan Won ◽  
Krishnaswami Srihari

Medicine ◽  
2021 ◽  
Vol 100 (20) ◽  
pp. e26024
Author(s):  
Masafumi Kaiume ◽  
Shigeru Suzuki ◽  
Koichiro Yasaka ◽  
Haruto Sugawara ◽  
Yun Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document