2016 ◽  
Vol 33 (1) ◽  
pp. e02789 ◽  
Author(s):  
Vladeta Zmijanovic ◽  
Simon Mendez ◽  
Vincent Moureau ◽  
Franck Nicoud

Author(s):  
Robert Braun ◽  
Peter Nordin ◽  
Liselott Ericson ◽  
L. Viktor Larsson ◽  
Petter Krus ◽  
...  

Abstract Hopsan is an open-source simulation package developed as a collaboration project between industry and academia. The simulation methodology is based on transmission line modelling, which provides several benefits such as linear model scalability, numerical robustness and parallel simulation. All sub-models are pre-compiled, so that no compilation is required prior to starting a simulation. Default component libraries are available for hydraulic, mechanic, pneumatic, electric and signal domains. Custom components can be written in C++ or generated from Modelica and Mathematica. Support for simulation-based optimization is provided using population-based, evolutionary or direct-search algorithms. Recent research has largely focused on co-simulation with other simulation tools. This is achieved either by using the Functional Mock-up Interface standard, or by tool-to-tool communications. This paper provides a description of the program and its features, the current status of the project, and an overview of recent and ongoing use cases from industry and academia.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2989
Author(s):  
Liangyou Lu ◽  
Peng Chen ◽  
Lenan Wu

Micro-Doppler generated by the micromotion of a target contaminates the inverse synthetic aperture radar (ISAR) image heavily. To acquire a clear ISAR image, removing the Micro-Doppler is an indispensable task. By exploiting the sparsity of the ISAR image and the low-rank of Micro-Doppler signal in the Range-Doppler (RD) domain, a novel Micro-Doppler removal method based on the robust principal component analysis (RPCA) framework is proposed. We formulate the model of sparse ISAR imaging for micromotion target in the framework of RPCA. Then, the imaging problem is decomposed into iterations between the sub-problem of sparse imaging and Micro-Doppler extraction. The alternative direction method of multipliers (ADMM) approach is utilized to seek for the solution of each sub-problem. Furthermore, to improve the computational efficiency and numerical robustness in the Micro-Doppler extraction, an SVD-free method is presented to further lessen the calculative burden. Experimental results with simulated data validate the effectiveness of the proposed method.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Branton J. Campbell ◽  
Harold T. Stokes ◽  
Tyler B. Averett ◽  
Shae Machlus ◽  
Christopher J. Yost

A linear-algebraic algorithm for identifying rigid-unit modes in networks of interconnected rigid units has recently been demonstrated. This article presents a series of enhancements to the original algorithm, which greatly improve its conceptual simplicity, numerical robustness, computational efficiency and interpretability. The improvements include the efficient isolation of constraints, the observation of variable-block separability, the use of singular value decomposition and a quantitative measure of solution inexactness.


2010 ◽  
Vol 33 (2) ◽  
pp. 638-638
Author(s):  
D. W. Miller ◽  
G. J. W. Mallory

Sign in / Sign up

Export Citation Format

Share Document