scholarly journals A Query-Efficient Quantum Algorithm for Maximum Matching on General Graphs

Author(s):  
Shelby Kimmel ◽  
R. Teal Witter
Algorithmica ◽  
2020 ◽  
Vol 82 (12) ◽  
pp. 3521-3565
Author(s):  
George B. Mertzios ◽  
André Nichterlein ◽  
Rolf Niedermeier

Abstract Finding maximum-cardinality matchings in undirected graphs is arguably one of the most central graph primitives. For m-edge and n-vertex graphs, it is well-known to be solvable in $$O(m\sqrt{n})$$ O ( m n )  time; however, for several applications this running time is still too slow. We investigate how linear-time (and almost linear-time) data reduction (used as preprocessing) can alleviate the situation. More specifically, we focus on linear-time kernelization. We start a deeper and systematic study both for general graphs and for bipartite graphs. Our data reduction algorithms easily comply (in form of preprocessing) with every solution strategy (exact, approximate, heuristic), thus making them attractive in various settings.


Algorithmica ◽  
1990 ◽  
Vol 5 (1-4) ◽  
pp. 383-406 ◽  
Author(s):  
Michael M. Wu ◽  
Michael C. Loui

2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Yanbing Zhang ◽  
Tingting Song ◽  
Zhihao Wu

2021 ◽  
Vol 26 ◽  
Author(s):  
T. Berry ◽  
J. Sharpe

Abstract This paper introduces and demonstrates the use of quantum computers for asset–liability management (ALM). A summary of historical and current practices in ALM used by actuaries is given showing how the challenges have previously been met. We give an insight into what ALM may be like in the immediate future demonstrating how quantum computers can be used for ALM. A quantum algorithm for optimising ALM calculations is presented and tested using a quantum computer. We conclude that the discovery of the strange world of quantum mechanics has the potential to create investment management efficiencies. This in turn may lead to lower capital requirements for shareholders and lower premiums and higher insured retirement incomes for policyholders.


Sign in / Sign up

Export Citation Format

Share Document