A Unified Representation Learning Strategy for Open Relation Extraction with Ranked List Loss

Author(s):  
Renze Lou ◽  
Fan Zhang ◽  
Xiaowei Zhou ◽  
Yutong Wang ◽  
Minghui Wu ◽  
...  
Author(s):  
Kishlay Jha ◽  
Guangxu Xun ◽  
Aidong Zhang

Abstract Motivation Many real-world biomedical interactions such as ‘gene-disease’, ‘disease-symptom’ and ‘drug-target’ are modeled as a bipartite network structure. Learning meaningful representations for such networks is a fundamental problem in the research area of Network Representation Learning (NRL). NRL approaches aim to translate the network structure into low-dimensional vector representations that are useful to a variety of biomedical applications. Despite significant advances, the existing approaches still have certain limitations. First, a majority of these approaches do not model the unique topological properties of bipartite networks. Consequently, their straightforward application to the bipartite graphs yields unsatisfactory results. Second, the existing approaches typically learn representations from static networks. This is limiting for the biomedical bipartite networks that evolve at a rapid pace, and thus necessitate the development of approaches that can update the representations in an online fashion. Results In this research, we propose a novel representation learning approach that accurately preserves the intricate bipartite structure, and efficiently updates the node representations. Specifically, we design a customized autoencoder that captures the proximity relationship between nodes participating in the bipartite bicliques (2 × 2 sub-graph), while preserving both the global and local structures. Moreover, the proposed structure-preserving technique is carefully interleaved with the central tenets of continual machine learning to design an incremental learning strategy that updates the node representations in an online manner. Taken together, the proposed approach produces meaningful representations with high fidelity and computational efficiency. Extensive experiments conducted on several biomedical bipartite networks validate the effectiveness and rationality of the proposed approach.


Author(s):  
Ronghui You ◽  
Yuxuan Liu ◽  
Hiroshi Mamitsuka ◽  
Shanfeng Zhu

Abstract Motivation With the rapid increase of biomedical articles, large-scale automatic Medical Subject Headings (MeSH) indexing has become increasingly important. FullMeSH, the only method for large-scale MeSH indexing with full text, suffers from three major drawbacks: FullMeSH (i) uses Learning To Rank, which is time-consuming, (ii) can capture some pre-defined sections only in full text and (iii) ignores the whole MEDLINE database. Results We propose a computationally lighter, full text and deep-learning-based MeSH indexing method, BERTMeSH, which is flexible for section organization in full text. BERTMeSH has two technologies: (i) the state-of-the-art pre-trained deep contextual representation, Bidirectional Encoder Representations from Transformers (BERT), which makes BERTMeSH capture deep semantics of full text. (ii) A transfer learning strategy for using both full text in PubMed Central (PMC) and title and abstract (only and no full text) in MEDLINE, to take advantages of both. In our experiments, BERTMeSH was pre-trained with 3 million MEDLINE citations and trained on ∼1.5 million full texts in PMC. BERTMeSH outperformed various cutting-edge baselines. For example, for 20 K test articles of PMC, BERTMeSH achieved a Micro F-measure of 69.2%, which was 6.3% higher than FullMeSH with the difference being statistically significant. Also prediction of 20 K test articles needed 5 min by BERTMeSH, while it took more than 10 h by FullMeSH, proving the computational efficiency of BERTMeSH. Supplementary information Supplementary data are available at Bioinformatics online


Author(s):  
Pengyong Li ◽  
Jun Wang ◽  
Ziliang Li ◽  
Yixuan Qiao ◽  
Xianggen Liu ◽  
...  

Self-supervised learning has gradually emerged as a powerful technique for graph representation learning. However, transferable, generalizable, and robust representation learning on graph data still remains a challenge for pre-training graph neural networks. In this paper, we propose a simple and effective self-supervised pre-training strategy, named Pairwise Half-graph Discrimination (PHD), that explicitly pre-trains a graph neural network at graph-level. PHD is designed as a simple binary classification task to discriminate whether two half-graphs come from the same source. Experiments demonstrate that the PHD is an effective pre-training strategy that offers comparable or superior performance on 13 graph classification tasks compared with state-of-the-art strategies, and achieves notable improvements when combined with node-level strategies. Moreover, the visualization of learned representation revealed that PHD strategy indeed empowers the model to learn graph-level knowledge like the molecular scaffold. These results have established PHD as a powerful and effective self-supervised learning strategy in graph-level representation learning.


Author(s):  
Jindong Wang ◽  
Cuiling Lan ◽  
Chang Liu ◽  
Yidong Ouyang ◽  
Tao Qin

Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.


2021 ◽  
Author(s):  
Wenxing Hong ◽  
Shuyan Li ◽  
Zhiqiang Hu ◽  
Abdur Rasool ◽  
Qingshan Jiang ◽  
...  

2021 ◽  
pp. 288-299
Author(s):  
Zihao Liu ◽  
Yan Zhang ◽  
Huizhen Wang ◽  
Jingbo Zhu

Sign in / Sign up

Export Citation Format

Share Document