Potential Role of Beneficial Microbes for Sustainable Treatment of Sewage Sludge and Wastewater

Author(s):  
Tabinda Athar ◽  
Anamika Pandey ◽  
Mohd. Kamran Khan ◽  
Zulfiqar Ahmad Saqib ◽  
Mah Jabeen ◽  
...  
Metallomics ◽  
2021 ◽  
Author(s):  
Dandan Yang ◽  
Chengxiao Hu ◽  
Xu Wang ◽  
Guangyu Shi ◽  
Yanfeng Li ◽  
...  

Abstract Selenium (Se) is a component of many enzymes and indispensable for human health due to its characteristics of reducing oxidative stress and enhancing immunity. Human beings take Se mainly from Se-containing crops. Taking measures to biofortify crops with Se may lead to improved public health. Se accumulation in plants mainly depends on the content and bioavailability of Se in soil. Beneficial microbes may change the chemical form and bioavailability of Se. This review highlights the potential role of microbes in promoting Se uptake and accumulation in crops and the related mechanisms. The potential approaches of microbial enhancement of Se biofortification can be summarized in the following four aspects: (1) microbes alter soil properties and impact the redox chemistry of Se to improve the bioavailability of Se in soil; (2) beneficial microbes regulate root morphology and stimulate the development of plants through the release of certain secretions, facilitating Se uptake in plants; (3) microbes upregulate the expression of certain genes and proteins that are related to Se metabolism in plants; (4) the inoculation of microbes give rise to the generation of certain metabolites in plants contributing to Se absorption. Considering the ecological safety and economic feasibility, microbial enhancement is a potential tool for Se biofortification. For further study, the recombination and establishment of synthesis microbes is of potential benefit in Se-enrichment agriculture.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


Sign in / Sign up

Export Citation Format

Share Document