Deep Convolutional Neural Network for Classifying Satellite Images with Heterogeneous Spatial Resolutions

2021 ◽  
pp. 519-530
Author(s):  
Mateus de Souza Miranda ◽  
Valdivino Alexandre de Santiago ◽  
Thales Sehn Körting ◽  
Rodrigo Leonardi ◽  
Moisés Laurence de Freitas
Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2398 ◽  
Author(s):  
Bin Xie ◽  
Hankui K. Zhang ◽  
Jie Xue

In classification of satellite images acquired over smallholder agricultural landscape with complex spectral profiles of various crop types, exploring image spatial information is important. The deep convolutional neural network (CNN), originally designed for natural image recognition in the computer vision field, can automatically explore high level spatial information and thus is promising for such tasks. This study tried to evaluate different CNN structures for classification of four smallholder agricultural landscapes in Heilongjiang, China using pan-sharpened 2 m GaoFen-1 (meaning high resolution in Chinese) satellite images. CNN with three pooling strategies: without pooling, with max pooling and with average pooling, were evaluated and compared with random forest. Two different numbers (~70,000 and ~290,000) of CNN learnable parameters were examined for each pooling strategy. The training and testing samples were systematically sampled from reference land cover maps to ensure sample distribution proportional to the reference land cover occurrence and included 60,000–400,000 pixels to ensure effective training. Testing sample classification results in the four study areas showed that the best pooling strategy was the average pooling CNN and that the CNN significantly outperformed random forest (2.4–3.3% higher overall accuracy and 0.05–0.24 higher kappa coefficient). Visual examination of CNN classification maps showed that CNN can discriminate better the spectrally similar crop types by effectively exploring spatial information. CNN was still significantly outperformed random forest using training samples that were evenly distributed among classes. Furthermore, future research to improve CNN performance was discussed.


2020 ◽  
Vol 2020 (4) ◽  
pp. 4-14
Author(s):  
Vladimir Budak ◽  
Ekaterina Ilyina

The article proposes the classification of lenses with different symmetrical beam angles and offers a scale as a spot-light’s palette. A collection of spotlight’s images was created and classified according to the proposed scale. The analysis of 788 pcs of existing lenses and reflectors with different LEDs and COBs carried out, and the dependence of the axial light intensity from beam angle was obtained. A transfer training of new deep convolutional neural network (CNN) based on the pre-trained GoogleNet was performed using this collection. GradCAM analysis showed that the trained network correctly identifies the features of objects. This work allows us to classify arbitrary spotlights with an accuracy of about 80 %. Thus, light designer can determine the class of spotlight and corresponding type of lens with its technical parameters using this new model based on CCN.


Author(s):  
André Pereira ◽  
Alexandre Pyrrho ◽  
Daniel Vanzan ◽  
Leonardo Mazza ◽  
José Gabriel Gomes

Sign in / Sign up

Export Citation Format

Share Document