Decentralised and Privacy Preserving Machine Learning for Multiple Distributed Data Resources

2021 ◽  
pp. 235-250
Author(s):  
Mona Alkhozae ◽  
Xiaojun Zeng
Nature ◽  
2021 ◽  
Author(s):  
Stefanie Warnat-Herresthal ◽  
◽  
Hartmut Schultze ◽  
Krishnaprasad Lingadahalli Shastry ◽  
Sathyanarayanan Manamohan ◽  
...  

AbstractFast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


2021 ◽  
Vol 13 (4) ◽  
pp. 94
Author(s):  
Haokun Fang ◽  
Quan Qian

Privacy protection has been an important concern with the great success of machine learning. In this paper, it proposes a multi-party privacy preserving machine learning framework, named PFMLP, based on partially homomorphic encryption and federated learning. The core idea is all learning parties just transmitting the encrypted gradients by homomorphic encryption. From experiments, the model trained by PFMLP has almost the same accuracy, and the deviation is less than 1%. Considering the computational overhead of homomorphic encryption, we use an improved Paillier algorithm which can speed up the training by 25–28%. Moreover, comparisons on encryption key length, the learning network structure, number of learning clients, etc. are also discussed in detail in the paper.


Sign in / Sign up

Export Citation Format

Share Document