Proposed Correlations for Laminar and Transition Friction Factors in Plain Tubes with Different Inlet Configurations

Author(s):  
Afshin J. Ghajar
Keyword(s):  
2020 ◽  
Vol 1599 ◽  
pp. 012018
Author(s):  
D Kang ◽  
C Hong ◽  
D Rehman ◽  
G L Morini ◽  
Y Asako ◽  
...  
Keyword(s):  
Gas Flow ◽  

2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


10.2118/661-g ◽  
1956 ◽  
Vol 8 (11) ◽  
pp. 59-62
Author(s):  
L.F. Stutzman ◽  
George Thodos
Keyword(s):  

Author(s):  
Ahmet Selim Dalkilic ◽  
Suriyan Laohalertdecha ◽  
Somchai Wongwises

Void fractions are determined in vertical downward annular two-phase flow of R134a inside 8.1 mm i.d. smooth tube. The experiments are done at average saturated condensing temperatures of 40 and 50°C. The average qualities are between 0.84–0.94. The mass fluxes are around 515 kg m−2s−1. The experimental setup is explained elaborately. Comparisons between the void fraction determined from 35 void fraction correlations are done. According to the use of various horizontal and vertical annular flow void fraction models together with the present experimental condensation heat transfer data, similar void fraction results were obtained mostly for the smooth tube. The experimental friction factors obtained from void fraction correlations are compared with the friction factors determined from graphical information provided by Bergelin et. al. Effect of void fraction alteration on the momentum pressure drop is also presented.


Author(s):  
Ali Kosar ◽  
Chih-Jung Kuo ◽  
Yoav Peles

An experimental study on thermal-hydraulic performance of de-ionized water over a bank of shrouded NACA 66-021 hydrofoil micro pin fins with wetted perimeter of 1030-μm and chord thickness of 100 μm has been performed. Average heat transfer coefficients have been obtained over effective heat fluxes ranging from 4.0 to 308 W/cm2 and mass velocities from 134 to 6600 kg/m2s. The experimental data is reduced to the Nusselt numbers, Reynolds numbers, total thermal resistances, and friction factors in order to determine the thermal-hydraulic performance of the heat sink. It has been found that prodigious hydrodynamic improvement can be obtained with the hydrofoil-based micro pin fin heat sink compared to the circular pin fin device. Fluid flow over pin fin heat sinks comprised from hydrofoils yielded radically lower thermal resistances than circular pin fins for a similar pressure drop.


Sign in / Sign up

Export Citation Format

Share Document