Hydoroil-Based Micro Pin Fin Heat Sink

Author(s):  
Ali Kosar ◽  
Chih-Jung Kuo ◽  
Yoav Peles

An experimental study on thermal-hydraulic performance of de-ionized water over a bank of shrouded NACA 66-021 hydrofoil micro pin fins with wetted perimeter of 1030-μm and chord thickness of 100 μm has been performed. Average heat transfer coefficients have been obtained over effective heat fluxes ranging from 4.0 to 308 W/cm2 and mass velocities from 134 to 6600 kg/m2s. The experimental data is reduced to the Nusselt numbers, Reynolds numbers, total thermal resistances, and friction factors in order to determine the thermal-hydraulic performance of the heat sink. It has been found that prodigious hydrodynamic improvement can be obtained with the hydrofoil-based micro pin fin heat sink compared to the circular pin fin device. Fluid flow over pin fin heat sinks comprised from hydrofoils yielded radically lower thermal resistances than circular pin fins for a similar pressure drop.

Author(s):  
Ali Kosar ◽  
Yoav Peles

An experimental study has been performed on single-phase heat transfer of de-ionized water over a bank of shrouded micro pin fins 243-μm long with hydraulic diameter of 99.5-μm. Heat transfer coefficients and Nusselt numbers have been obtained over effective heat fluxes ranging from 3.8 to 167 W/cm2 and Reynolds numbers from 14 to 112. The results were used to derive the Nusselt numbers and total thermal resistances. It has been found that endwalls effects are significant at low Reynolds numbers and diminish at higher Reynolds numbers.


Author(s):  
J. L. Zu´n˜iga-Cerroblanco ◽  
A. Herna´ndez-Guerrero ◽  
G. J. Kowalski ◽  
J. C. Rubio-Arana

This work describes the hydraulic and thermal behavior of pin-fin heat sinks when subjected to a constant heat flux with values equivalent to those generated incurrent electronic devices. The fin geometries analyzed are rectangular, circular and elliptical. The experimental analysis is performed for pin-fin in-line arrangement. The heat sink arrangement is also analyzed numerically for pin-fin in-line and staggered arrangements; and the results are compared. The thermal resistance and pressure drop is reported for all arrangements for different air velocities. The experimental and numerical results are compared and validated with recent technical literature. The Entropy Generation Minimization (EGM) is used to obtain an optimization of the heat sink pin fin arrangement. Analytical and empirical correlations for heat transfer coefficients and friction factors are used in the optimization model. This optimization model considers all relevant design parameters for pin-fin heat sinks, including geometric parameters, material properties and flow.


Author(s):  
Eric D. Truong ◽  
Erfan Rasouli ◽  
Vinod Narayanan

A combined experimental and computational fluid dynamics study of single-phase liquid nitrogen flow through a microscale pin-fin heat sink is presented. Such cryogenic heat sinks find use in applications such as high performance computing and spacecraft thermal management. A circular pin fin heat sink in diameter 5 cm and 250 micrometers in depth was studied herein. Unique features of the heat sink included its variable cross sectional area in the flow direction, variable pin diameters, as well as a circumferential distribution of fluid into the pin fin region. The stainless steel heat sink was fabricated using chemical etching and diffusion bonding. Experimental results indicate that the heat transfer coefficients were relatively unchanged around 2600 W/m2-K for flow rates ranging from 2–4 g/s while the pressure drop increased monotonically with the flow rate. None of the existing correlations in literature on cross flow over a tube bank or micro pin fin heat sinks were able to predict the experimental pressure drop and heat transfer characteristics. However, three dimensional simulations performed using ANSYS Fluent showed reasonable (∼7 percent difference) agreement in the average heat transfer coefficients between experiments and CFD simulations.


Author(s):  
Massimiliano Rizzi ◽  
Ivan Catton

An experimental study of a pin fin heat sink was carried out in support of the development of heat sink optimization methods requiring more detailed measurements be made. Measurements of heat flux and temperature are used to separately determine heat transfer coefficients for the pins and the base region between the pins. Three pitch to diameter ratios (distance from pin center to pin center measured diagonally) were studied: P/d = 3/1, 9/4, 3/2. Heat generation was accomplished using cartridge heaters inserted into a copper block. The high thermal conductivity of the copper ensured that the surface beneath the heat sink would be at a constant temperature. The cooling fluid was air and the experiments were conducted with a Reynolds numbers based on a porous media type hydraulic diameter ranging from 500 to 25000. The channel had a shroud that touches the fin tips, eliminating any flow bypass. The pin surface heat transfer coefficients match the values reported by Kays and London and by Zukauskas. The base region heat transfer coefficients were, surprisngly, larger than the pin values.


Author(s):  
S. B. Chiang ◽  
C. C. Wang

In this study, the concept of the thermal module of LEDs cooling by use of drilled hole to entrain air flow was examined. It is found that the drilled hole does not necessarily improve the overall performance. It depends on the size of the drilled hole, the number of drilled holes, and the locations. The heat transfer coefficients are generally increased with the number of drilled holes and the diameter of the drilled hole. In this paper, the plate fin heat sink has a higher heat transfer coefficients than pin fins, but the overall performance of the LED panel having pin fin outperforms that of plate fin. This is because the pin fin provides much larger surface area. For decrease the maximum temperature of the LED panel, placement of the drilled holes along the hot region will be more effective.


2021 ◽  
pp. 1-26
Author(s):  
Patrick K. Dubois ◽  
Alexandre Landry-Blais ◽  
Rym Gazzah ◽  
Sani Sivic ◽  
Vladimir Brailovski ◽  
...  

Abstract The Inside-out ceramic turbine (ICT), a novel microturbine rotor architecture, has an air-cooled ring which keeps its composite rotating structural shroud within operating temperature. The cooling ring must achieve a significant radial temperature gradient with a minimal amount of cooling. The cooling ring is made through additive manufacturing, which opens the design space to tailored cooling geometries. Additively manufactured pin fin heat transfer enhancers are explored in this work to assess whether they hold any significant performance benefit over current rectangular cross-section open channels. Experimental friction factors and Nusselt numbers were determined for small, densely-packed pin fins over an asymmetrical thermal load. Results indicate that pressure loss is similar to what can be expected for additively manufactured pin fins, whereas heat transfer is lower due to the extremely tight streamwise pin spacing, in both in-line and staggered pin configurations. A design study presented in this paper suggests that pin fins are beneficial to an ICT for reducing cooling mass flow rate up to 40 %, against an increase in cooling ring mass of roughly 50%.


Author(s):  
Sulaman Pashah ◽  
Abul Fazal M. Arif

Heat sinks are used in modern electronic packaging system to enhance and sustain system thermal performance by dissipating heat away from IC components. Pin fins are commonly used in heat sink applications. Conventional metallic pins fins are efficient in low Biot number range whereas high thermal performance can be achieved in high Biot number regions with orthotropic composite pin fins due to their adjustable thermal properties. However, several challenges related to performance as well as manufacturing need to be addressed before they can be successfully implemented in a heat sink design. A heat sink assembly with metallic base plate and polymer composite pin fins is a solution to address manufacturing constraints. During the service life of an electronic packaging, the heat sink assembly is subjected to power cycles. Cyclic thermal stresses will be important at the pin-fin and base-plate interface due to thermal mismatch. The cyclic nature of stresses can lead to fatigue failure that will affect the reliability of the heat sink and electronic packaging. A finite element model of the heat sink is used to investigate the thermal stress cyclic effect on thermo-mechanical reliability performance. The aim is to assess the reliability performance of the epoxy bond at the polymer composite pin fins and metallic base plate interface in a heat-sink assembly.


Author(s):  
T. J. John ◽  
B. Mathew ◽  
H. Hegab

In this paper the authors are studying the effect of introducing S-shaped pin-fin structures in a micro pin-fin heat sink to enhance the overall thermal performance of the heat sinks. For the purpose of evaluating the overall thermal performance of the heat sink a figure of merit (FOM) term comprising both thermal resistance and pumping power is introduced in this paper. An optimization study of the overall performance based on the pitch distance of the pin-fin structures both in the axial and the transverse direction, and based on the curvature at the ends of S-shape fins is also carried out in this paper. The value of the Reynolds number of liquid flow at the entrance of the heat sink is kept constant for the optimization purpose and the study is carried out over a range of Reynolds number from 50 to 500. All the optimization processes are carried out using computational fluid dynamics software CoventorWARE™. The models generated for the study consists of two sections, the substrate (silicon) and the fluid (water at 278K). The pin fins are 150 micrometers tall and the total structure is 500 micrometer thick and a uniform heat flux of 500KW is applied to the base of the model. The non dimensional thermal resistance and nondimensional pumping power calculated from the results is used in determining the FOM term. The study proved the superiority of the S-shaped pin-fin heat sinks over the conventional pin-fin heat sinks in terms of both FOM and flow distribution. S-shaped pin-fins with pointed tips provided the best performance compared to pin-fins with straight and circular tips.


Author(s):  
Mehmed Rafet O¨zdemir ◽  
Ali Kos¸ar

With the increasing speed and decreasing size of current microprocessors and microchips the dimensions of their heat sinks are continuously shrinking from mini size to micro size. The most extensively used and practical micro heat sinks are plain microchannels which find applications in many areas besides electronics cooling such as in microreactors, fuel cells, drug delivery, micropropulsion and automotive industry. Because of their widespread usage, they attracted the attention of many researchers, which gave rise to many studies on single-phase as well as on flow boiling. The proposed study aims at filling the gap in heat and fluid flow in microchannels at high mass velocities in the literature. For this purpose single-phase fluid (de-ionized water) flow was investigated over a broad range of mass velocity (1300 kg/m2s-7200 kg/m2s) in a microtube with an inner diameter of ∼ 250 μm. Besides comparing the experimental results in fully developed flow to the theory, the focus of this study is on thermally developing flows. Wall temperatures and pressure drops were measured and processed to obtain heat transfer coefficients, Nusselt numbers and friction factors. It was found that the existing theory about developing flows could fairly predict experimental data on developing flows in microscale for both laminar and turbulent conditions.


Author(s):  
Anil Kumar Patil ◽  
Vishwjeet Choudhary ◽  
Ayush Gupta ◽  
Manoj Kumar

Extended surfaces are widely investigated for their ability to enhance the heat transfer rates in different applications. Pin-fin and plate-fin heat sinks are used in a variety of cases involving a miniaturized to the large systems. The present study compares the performance of the pin-fin and the plate-fin heat sink under similar forced flow conditions. The experimental data for a modified pin fin heat sink with wings and a plate-fin heat sink with dimples are collected for the Reynolds number in the range of 6800–15100. The Nusselt number, friction factor, and thermo-hydraulic performance (THP) are examined for different geometries of the heat sink and the enhancements brought out in the heat transfer and friction are gauged relative to the smooth plate. The pin fin heat sink yields two-fold enhancement in heat transfer as compared to the plate-fin heat sink. The maximum thermo-hydraulic performance of the pin-fin heat sink with wings is found to be 4.52 at a pitch ratio (S/Df) of 2 and Wing length ratio (Lw/Df). For the plate fin heat sink with dimples, the maximum thermo-hydraulic performance is found to be 4.67 at dimple diameter ratio (D/d) of 0.5 and dimple pitch ratio (s/d) of 2.5. The correlations of the Nusselt number and friction factor are proposed for different geometries of fins.


Sign in / Sign up

Export Citation Format

Share Document