Comparison Between Direct Shear and Flexural Tests on RC Elements Strengthened with SRG Composites Subjected to Cyclic Loading

2021 ◽  
pp. 1778-1792
Author(s):  
Andrea Incerti ◽  
Alessandro Bellini ◽  
Claudio Mazzotti
Author(s):  
Zhen Cui ◽  
Qian Sheng ◽  
Mao-chu Zhang ◽  
Jun-feng Cao ◽  
Xian-cheng Mei ◽  
...  

2007 ◽  
Vol 44 (7) ◽  
pp. 739-752 ◽  
Author(s):  
Giuseppe Mortara ◽  
Antonio Mangiola ◽  
Vito Nicola Ghionna

The sliding interaction between sand and structural materials is involved in many geotechnical applications and is particularly important for the derivation of the shaft capacity of piles. Such interaction develops principally at the interface between the sand mass and the structural surface, and the comprehension of such interaction can be analysed through soil–structure interface tests. In particular, by using a modified version of the interface direct shear apparatus, that is, the constant normal stiffness direct shear apparatus, the friction characteristics of the interface and the role of the soil deformability on the experimental results can be studied. This paper focuses on the stress degradation occurring in these types of tests when cyclic loading is applied on sand–steel interfaces. Also, the post-cyclic response is analysed and compared to the response under monotonic conditions.Key words: interface, sand, shear stress, cyclic loading, stress degradation.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Changnv Zeng ◽  
Yuke Wang

The interface behavior between wheat and concrete plays a decisive role in the design of silo structures. In this paper, a series of strain-controlled monotonic direct shear (MDS) tests, cyclic direct shear (CDS) tests, and postcyclic direct shear (PCDS) tests were conducted to investigate the wheat-concrete interface behavior under monotonic and cyclic loading. The influence of cycle numbers, shear displacement amplitude, normal stress, and preloading consolidation was discussed in detail. In particular, the preloading consolidation simulates the partly discharging state of wheat. The values of peak stress increase with increasing displacement amplitude and cycles, and they change slightly after 10 cycles. The interface exhibits an overall contraction deformation during the MDS tests without preloading, but the contraction is suppressed by an alternating dilation during the DCS tests, and an overall small dilation occurs at small normal stress during PCDS tests. It is observed that the cyclic loading and preloading normal stresses result in an increasing peak strength, internal friction angle, and apparent cohesion, whereas a decrease in interface contraction deformation.


2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


Sign in / Sign up

Export Citation Format

Share Document