normal stiffness
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 44)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 42 ◽  
pp. 03005
Author(s):  
Ekaterina Balakina ◽  
Alexander Konshin ◽  
Mikhail Kochetov

The impact of a wheeled agricultural vehicle on the deformable support surface determines the vehicle's ability to move, as well as soil compaction, which is not desirable in agriculture. The agricultural machine must not cause more pressure on the ground than is permissible. Therefore, in the tasks of design numerical modelling of the agricultural vehicle movement or trailer, it is required to calculate the specified parameter. It is impossible to calculate without knowledge of the geometric characteristics of the contact spot associated with the normal deformation of the tire under normal load. To calculate these characteristics, it is necessary to have universal dependencies for determining the normal stiffness of the tire. These are available for tires of various purposes. The elastic properties of ultra-low pressure tires are insufficiently studied. Experimental studies of the elastic properties of these tires have been carried out with the authors participation. However, there are currently no dependencies to describe them. This does not provide the possibility of a correct design calculation of the influence of such tires on the soil. The purpose of the work: to develop a universal method for calculating the influence on the soil of agricultural vehicle. A universal method for calculating the impact of a wheeled agricultural machine on the ground has been developed. Universal design-experimental dependence for determining the normal stiffness of ultra-low pressure tires is obtained. It takes into account tire pressure, normal load under specific conditions and geometric characteristics.


Author(s):  
Bo Li ◽  
Xiaofeng Cui ◽  
Liangchao Zou ◽  
Vladimir Cvetkovic

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Guansheng Han ◽  
Fei Xiong ◽  
Yu Zhou ◽  
Leibo Song ◽  
Xingkai Wang

The constant normal stiffness (CNS) boundary condition is more representative for the underground engineering, in which the shear-induced dilation is restricted by surrounding rocks, resulting in an increase in the normal stress. Therefore, the use of CNS boundary conditions in the research of shear-slip failure of underground rock engineering is more in line with the actual situation. Taking the instability and failure of surrounding rock in underground engineering as the background, the present study introduces the engineering background of CNS boundary conditions and the research progress on shear characteristics of rock joints under CNS boundary conditions. Three key directions for future research are proposed based on the latest research results of shear characteristics of rock joint under CNS boundary conditions: ① developing a rock joint shear test system that can realize the function of “CNS boundary conditions + shear-seepage test + visualization”; ② carrying out the shear tests of real rock joints under CNS boundary conditions based on 3D scanning and 3D carving technology; and ③ carrying out the shear tests of rock joint network under CNS boundary conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yu Liu ◽  
Qianqi Xu ◽  
Xiaodan Sun ◽  
Guotao Yang ◽  
Guotang Zhao

During the running of a high-speed train, the wheel may bounce on the rail due to the track irregularity. The wheel bounce could generate a vertical impact, leading to the initiation and expansion of delamination between layers of the track structure. In this paper, the evolution of the interfacial damage and delamination subjected to the vertical impact is simulated using finite element analysis (FEA). In the FEA, a bilinear cohesive zone model (CZM) is adopted to simulate the interface between the track slab and the CA mortar layer. For different levels of impact energy, the contact force, vertical deformation, absorbed energy, area of interfacial damage, and area of delamination are calculated and compared. The effects of the tangential and normal stiffness of the interface on the distribution of interfacial damage and delamination are investigated. The results show that the contact force, vertical deformation, absorbed energy, area of interfacial damage, and area of delamination increase with the increase of the impact energy. The area of interfacial damage in the compression stage is closely related to the tangential stiffness, whereas the area of delamination depends on the normal stiffness. The normal stiffness that gives the largest area of delamination is recommended to be taken as the lower bound of the normal stiffness for both controlling the delamination and preventing an exceedance of the track irregularity limit.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 101066
Author(s):  
S. Chen ◽  
D. Rittel ◽  
K. Shemtov Yona

Sign in / Sign up

Export Citation Format

Share Document