Influence of Fan Duty Point on the Performance of Mechanical Draught Wet Cooling Towers

2021 ◽  
pp. 305-312
Author(s):  
Berina Delalić-Gurda ◽  
Džana Kadrić ◽  
Almin Halač ◽  
Nijaz Delalić ◽  
Elvedina Sikira
Keyword(s):  
PCI Journal ◽  
1997 ◽  
Vol 42 (1) ◽  
pp. 12-28
Author(s):  
Keith D. McCartney ◽  
Bryant Zavitz ◽  
Douglas A. Leisy ◽  
Gary R. Mirsky
Keyword(s):  

2020 ◽  
Author(s):  
Andrew John PENDERY

There are some striking similarities between Legionnaire’s disease and COVID-19. Thesymptoms, age group and sex at risk are identical. The geographical distribution of both diseases is similar in Europe overall, and within the USA, France and Italy. The environmental distributions are also similar. However Legionnaire’s disease is caused by Legionella bacteria while COVID-19 is caused by the Corona virus. Whereas COVID-19 is contagious, Legionnaire’s disease is environmental. Legionella bacteria are commonly found in drinking water systems and near air conditioning cooling towers. Legionnaire’sdisease is caught by inhaling contaminated water droplets. The Legionella bacteria does not spread person to person and only causes disease if it enters the lungs.Could the Corona virus be making it easier for Legionella bacteria to enter the lungs?


2011 ◽  
Vol 48 (2) ◽  
pp. 154-159 ◽  
Author(s):  
A. M. Badawi ◽  
D. E. Mohamed ◽  
A. A. Hafiz ◽  
S. M. Ahmed ◽  
Y. M. Gohar ◽  
...  

2020 ◽  
Vol 68 (2) ◽  
pp. 137-145
Author(s):  
Yang Zhouo ◽  
Ming Gao ◽  
Suoying He ◽  
Yuetao Shi ◽  
Fengzhong Sun

Based on the basic theory of water droplets impact noise, the generation mechanism and calculation model of the water-splashing noise for natural draft wet cooling towers were established in this study, and then by means of the custom software, the water-splashing noise was studied under different water droplet diameters and water-spraying densities as well as partition water distribution patterns conditions. Comparedwith the water-splashing noise of the field test, the average difference of the theoretical and the measured value is 0.82 dB, which validates the accuracy of the established theoretical model. The results based on theoretical model showed that, when the water droplet diameters are smaller in cooling tower, the attenuation of total sound pressure level of the water-splashing noise is greater. From 0 m to 8 m away from the cooling tower, the sound pressure level of the watersplashing noise of 3 mm and 6 mm water droplets decreases by 8.20 dB and 4.36 dB, respectively. Additionally, when the water-spraying density becomes twice of the designed value, the sound pressure level of water-splashing noise all increases by 3.01 dB for the cooling towers of 300 MW, 600 MW and 1000 MW units. Finally, under the partition water distribution patterns, the change of the sound pressure level is small. For the R s/2 and Rs/3 partition radius (Rs is the radius of water-spraying area), when the water-spraying density ratio between the outer and inner zone increases from 1 to 3, the sound pressure level of water-splashing noise increases by 0.7 dB and 0.3 dB, respectively.


Sign in / Sign up

Export Citation Format

Share Document