Applying Fuzzy Logic and Neural Network in Sentiment Analysis for Fake News Detection: Case of Covid-19

Author(s):  
Bahra Mohamed ◽  
Hmami Haytam ◽  
Fennan Abdelhadi
2012 ◽  
Vol 3 (2) ◽  
pp. 298-300 ◽  
Author(s):  
Soniya P. Chaudhari ◽  
Prof. Hitesh Gupta ◽  
S. J. Patil

In this paper we review various research of journal paper as Web Searching efficiency improvement. Some important method based on sequential pattern Mining. Some are based on supervised learning or unsupervised learning. And also used for other method such as Fuzzy logic and neural network


2019 ◽  
Vol 8 (3) ◽  
pp. 6634-6643 ◽  

Opinion mining and sentiment analysis are valuable to extract the useful subjective information out of text documents. Predicting the customer’s opinion on amazon products has several benefits like reducing customer churn, agent monitoring, handling multiple customers, tracking overall customer satisfaction, quick escalations, and upselling opportunities. However, performing sentiment analysis is a challenging task for the researchers in order to find the users sentiments from the large datasets, because of its unstructured nature, slangs, misspells and abbreviations. To address this problem, a new proposed system is developed in this research study. Here, the proposed system comprises of four major phases; data collection, pre-processing, key word extraction, and classification. Initially, the input data were collected from the dataset: amazon customer review. After collecting the data, preprocessing was carried-out for enhancing the quality of collected data. The pre-processing phase comprises of three systems; lemmatization, review spam detection, and removal of stop-words and URLs. Then, an effective topic modelling approach Latent Dirichlet Allocation (LDA) along with modified Possibilistic Fuzzy C-Means (PFCM) was applied to extract the keywords and also helps in identifying the concerned topics. The extracted keywords were classified into three forms (positive, negative and neutral) by applying an effective machine learning classifier: Convolutional Neural Network (CNN). The experimental outcome showed that the proposed system enhanced the accuracy in sentiment analysis up to 6-20% related to the existing systems.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Author(s):  
Zheng Zhang ◽  
Jianrong Zheng

Taking the crankshaft-rolling bearing system in a certain type of compressor as the research objective, dynamic analysis software is used to conduct detailed dynamic analysis and optimal design under the rated power of the compressor. Using Hertz mathematical formula and the analysis method of the superstatic orientation problem, the relationship expression between the bearing force and deformation of the rolling bearing is solved, and the dynamic analysis model of the elastic crankshaft-rolling bearing system is constructed in the simulation software ADAMS. The weighted average amplitude of the center of the neck between the main bearings is used as the target, and the center line of the compressor cylinder is selected as the design variable. Finally, an example analysis shows that by introducing the fuzzy logic neural network algorithm into the compressor crankshaft-rolling bearing system design, the optimal solution between the design variables and the objective function can be obtained, which is of great significance to the subsequent compressor dynamic design.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 15561-15569
Author(s):  
Narisa Zhao ◽  
Huan Gao ◽  
Xin Wen ◽  
Hui Li

2021 ◽  
Vol 69 ◽  
pp. 102946
Author(s):  
María Teresa García-Ordás ◽  
Héctor Alaiz-Moretón ◽  
José Alberto Benítez-Andrades ◽  
Isaías García-Rodríguez ◽  
Oscar García-Olalla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document