scholarly journals Geometric Quantization and Equivariant Cohomology

Author(s):  
Michèle Vergne
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2017 ◽  
Vol 218 ◽  
pp. 93-96 ◽  
Author(s):  
Oliver Goertsches ◽  
Augustin-Liviu Mare

2017 ◽  
Vol 29 (05) ◽  
pp. 1750015 ◽  
Author(s):  
Samuel Monnier

We construct invertible field theories generalizing abelian prequantum spin Chern–Simons theory to manifolds of dimension [Formula: see text] endowed with a Wu structure of degree [Formula: see text]. After analyzing the anomalies of a certain discrete symmetry, we gauge it, producing topological field theories whose path integral reduces to a finite sum, akin to Dijkgraaf–Witten theories. We take a general point of view where the Chern–Simons gauge group and its couplings are encoded in a local system of integral lattices. The Lagrangian of these theories has to be interpreted as a class in a generalized cohomology theory in order to obtain a gauge invariant action. We develop a computationally friendly cochain model for this generalized cohomology and use it in a detailed study of the properties of the Wu Chern–Simons action. In the 3-dimensional spin case, the latter provides a definition of the “fermionic correction” introduced recently in the literature on fermionic symmetry protected topological phases. In order to construct the state space of the gauged theories, we develop an analogue of geometric quantization for finite abelian groups endowed with a skew-symmetric pairing. The physical motivation for this work comes from the fact that in the [Formula: see text] case, the gauged 7-dimensional topological field theories constructed here are essentially the anomaly field theories of the 6-dimensional conformal field theories with [Formula: see text] supersymmetry, as will be discussed elsewhere.


1988 ◽  
Vol 16 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Giuseppe Gaeta ◽  
Mauro Spera

2016 ◽  
Vol 16 (4) ◽  
pp. 1953-2019 ◽  
Author(s):  
J P C Greenlees

Author(s):  
Christian Voigt

AbstractWe consider smooth actions of totally disconnected groups on simplicial complexes and compare different equivariant cohomology groups associated to such actions. Our main result is that the bivariant equivariant cohomology theory introduced by Baum and Schneider can be described using equivariant periodic cyclic homology. This provides a new approach to the construction of Baum and Schneider as well as a computation of equivariant periodic cyclic homology for a natural class of examples. In addition we discuss the relation between cosheaf homology and equivariant Bredon homology. Since the theory of Baum and Schneider generalizes cosheaf homology we finally see that all these approaches to equivariant cohomology for totally disconnected groups are closely related.


1986 ◽  
Vol 27 (5) ◽  
pp. 1319-1330 ◽  
Author(s):  
Abhay Ashtekar ◽  
Matthew Stillerman

Sign in / Sign up

Export Citation Format

Share Document