A New Approach for Studying Nonlinear Dynamic Response of a Thin Fractionally Damped Plate with 2:1 and 2:1:1 Internal Resonances

Author(s):  
Yury A. Rossikhin ◽  
Marina V. Shitikova
2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Y. X. Hao ◽  
W. Zhang ◽  
X. L. Ji

The nonlinear dynamic response of functionally graded rectangular plates under combined transverse and in-plane excitations is investigated under the conditions of 1 : 1, 1 : 2 and 1 : 3 internal resonance. The material properties are assumed to be temperature-dependent and vary along the thickness direction. The thermal effect due to one-dimensional temperature gradient is included in the analysis. The governing equations of motion for FGM rectangular plates are derived by using Reddy's third-order plate theory and Hamilton's principle. Galerkin's approach is utilized to reduce the governing differential equations to a two-degree-of-freedom nonlinear system including quadratic and cubic nonlinear terms, which are then solved numerically by using 4th-order Runge-Kutta algorithm. The effects of in-plane excitations on the internal resonance relationship and nonlinear dynamic response of FGM plates are studied.


Sign in / Sign up

Export Citation Format

Share Document